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MAGNETIC DIPOLE MOMENT DETERMINATION
BY NEAR-FIELD ANALYSIS

by
W. L. Eichhorn
Goddard Space Flight Center

CHAPTER |

INTRODUCTION

A spacecraft orbiting in the earth’s magnetic field will be subject to forces and torques resulting
from the interaction between the earth’s field and onboard currents and magnetic matter. Since the
earth’s field is uniform over the volume of the spacecraft, this interaction may be described solely in
terms of the dipole moment of the spacecraft. There are two ways to determine this moment. One is
by direct measurement of the torque acting on the spacecraft in a known magnetic field. The other is
by a suitable analysis of the spacecraft magnetic field. In cases where torque measurement is impossi-
ble, one must rely entirely on magnetic measurements.

This report presents a refined version of the method of dipole moment determination described
in Reference 1. It discusses a technique designed to analyze the near-field portion of the spacecraft’s
magnetic field. The near field is defined as that part of the spacecraft’s field that can not be satisfac-
torily represented by a centered dipole field. This region begins on the surface of the smallest sphere
that completely encloses the spacecraft and extends outward until the spacecraft’s field is considered
“sufficiently dipolar.” This transition from a nondipolar to a dipolar field is not at all well defined
and frequently occurs at large distances from the spacecraft.

If, for some reason, measurements cannot be made in the far-field (dipolar) portion of the space-
craft’s field, data must be taken in the near field. It is here that one lacks a satisfactory data analysis
technique. The only techniques available for analysis in this portion of the field require data that are
difficult if not impossible to obtain. Two such techniques are described in References 2 and 3, and
the difficulties with both of them are obvious. Each requires data to be taken on some closed surface
surrounding the spacecraft. Whether or not these data can even be obtained depends upon the particu-
lar spacecraft in question. However, even at best, data collection is tedious and time consuming. Also,
it would be difficult to devise a data collection system with sufficient flexibility to deal with any type



of spacecraft. These are major drawbacks, rendering any near-field analysis technique requiring this
type of data highly impractical.

The only points at which the spacecraft’s field can easily be measured lie in a horizontal plane or
on a vertical line, both of which pass through the center of the spacecraft. If one could calculate the
spacecraft’s dipole moment from these data, the near-field problem would be solved. Unfortunately,
an exact determination of the dipole moment from this limited amount of data is, in principle, impos-
sible. However, it was found that if an assumption were made about the nature of the field, the calcu-
lations could be done. The spacecraft’s field can be assumed to be adequately approximated by the
superposition of a certain number of multipole fields. If this assumption is made, a unique solution
for the dipole moment exists. However, if the assumption is invalid, there will be an error present in
‘the calculations. Therefore, this type of near-field analysis must also include a procedure by which
one can determine the magnitude of this error. If this can be done, one can specify limits within
which the true dipole moment must lie. Only then is the task complete.

This report presents a technique which satisfies the above requirements. In the interest of com-
pleteness, the theory is developed from first principles and carried through to final form. The accuracy
of the method has been carefully evaluated by computer simulation of many sample cases. The results
~ of these tests are discussed along with recommendations for the applications of this technique.



CHAPTER i

THEORETICAL CONSIDERATIONS

Magnetically, a spacecraft is a localized source containing macroscopic currents and magnetic
matter that give rise to a magnetic field. This field obeys Maxwell’s equations everywhere in space.
The problem is to determine the form of this field in terms of the parameters of the source. There are
several ways in which one can do this. The formalism which will be used here involves an expansion of
the field in terms of known vector functions of the angular coordinates, and solution for the coeffi-
cients of this expansion by the use of Maxwell’s equations. These vector functions are known as “‘vec-
tor spherical harmonics” and are most commonly found in the literature of quantum mechanics. They
are, however, a purely mathematical formalism, useful also for describing classical fields. A discussion
of them is included in Appendix A and only the directly relevant portions will be employed in the
main text. It is necessary, however, to start with several preliminary definitions.

Throughout the text all functions will be referenced to a coordinate system whose origin, 0, is
located somewhere within the source. The coordinates used will be either spherical polar or Cartesian
(Figure 1). The vector spherical harmonic formalism requires the definition of so-called “spherical
unit vectors.” These vectors will be designated by e, €, and e_;, and are defined as

1
e,, =~ =+,

+1 \/5

€ ~Us,
and

e = :/% (u, ~iu,),
where i = v/-1. These vectors have the following properties:
(1) The complex conjugate is given by
e]’." = (—l)fe_]. .
(2) The scalar product satisfies
q’ 4q aqq’ )

(3) Any vector can be expressed in terms of these unit vectors. The spherical components ofa
vector V are given by
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Figure 1—Coordinates of the position vector r in Cartesian and spherical polar coordinate systems.

If the spherical components of the vector are given, the vector appears as
+1
= -1V
\ z 1Y Ve,
=T

+1

- ZE &V,

j=1

In terms of the associated Legendre functions p}”(cos 8), given by the equation

m _(_l)m -y 2ym/[2 ij+m 2 -1y
P =@ =) a1y

ordinary spherical harmonics Y].m(G, ¢) can be defined by

4

(1)



ety TG pn o amo
Y, 0,0)=(1) - (j+m)!Pf (cos §)e™® (2)

The vector spherical harmonics Y%(G, ¢) can now be defined as

+k +1
YIO.0= > D Y 0.00C, U Msm, e, 3)

m=-k g=~1
where the quantities Ckl(J,M ;m, q) are known as Clebsch-Gordan coefficients.

The formulas for the coefficients appropriate to this discussion are given in Appendix A, Table
A-1. They exhibit the property that C;; = 0 unless k=Jxl,JandM=m+gq.

This means that for each value of J except J = 0 there will be three vector spherical harmonics.
Since the functions Y, form a complete set for scalar functions and the e , 12 complete set of basis
vectors, the functions in Equation 3 also form a complete set for vector functions in three dimensions.
Hence, any vector field may be written as a linear combination of the Y;” , with coefficients depending
on the radial coordinate alone.

Let the steady-state current density distribution within the source be denoted by J(r) and the
magnetization density by M(r). Let these sources give rise to a magnetic vector potential A(r) and a
magnetic flux density B(r) related to it by B =V x A. According to the usual conventions, one defines
the magnetic field strength H(r) by H = B/u0 - M in rationalized MKS units. These functions then sat-
isfy the following equations:

I@x), inside
V x H(r) = ,
, outside
J(r) + .V x M(r), inside
v x B(r) = pod () + 1 ) o
0, outside

and
,uOJ(r) +uy Vx M(r), inside

Vx Vx A(r) = S
0 outside

>

These equations are valid throughout all space. (Note that J and M are zero outside the source.)

If A and B are expanded in terms of the vector spherical harmonics,

+f

A(r)=i > 21 4Gy m, DY, (0,0)

j=0 m=—j k=-1



and

B(r) = z Z Z dy G.m)Y™,, (0,0)

j=0 m=-j k=-1

z 2 B,, ().

j=0 m=

The quantities 4m and B]m are known as ““pure multipole fields”.

Outside the source, one must require that
V.Bjm :VxBjm :0.
Therefore (from Appendix A, Equations A-6, A-7, and A-8),

j+1fd j+2\ j fd -1\ ,
‘B =/ R oty o0 e |y =0
V' B l: 2j+1<dr r >d+1 2j+1<dr ¥ > ‘IJ m

and, fromVxBjm =0,
i d j+2 d j-1
N\—+—)d, + Ji+1 {— - —)d' | Y™
2% +1 {[ﬁ(dr ¥ > *1 g <dr r > "] y
. a jrly _
+f< >0Y]”}+l ]+1(C;+ r)dOY]’.f}_l} =0.

Since the functions Y]'Z and Y]m are not zero, their coefficients must be. Hence,

d . j+2\ ., . (4 1'-1> :
i+ 1 {— + d., + — - d,=0 4
! <dr ¥ > 1 ﬁ(dr r -1 “)
and
-<i+f+2>df N ~+1<i j_1>d' =0 (5)
T\ar r *1 J dr r -1 ’
so that
d J\ ,
— - 2ld =0 (6
<dr r> 0 (6a)
and
d j+1y
— + d, =0. 6b
<dr e > 0 (60)

The solution for Equations 6a and 6b exists only when d(') = 0. The solutions for Equations 4 and

5 exist when
d J+2\ d j-1 ,
— + dig =\ - d_,=0.
dr v dr v




Therefore, one must require

R
dy, =
d, = pi-1

In a region containing no sources, B].m must therefore have the form

-4 ym j-1ym
By ()= =2 Y71 @0) 4 b1 1 09), ©)
where a and b are constants.

In order to give this form for B].m , the fields A].m must be of the form

Ay () = do (G )Y 0.8) . ®)

This is so because V X Y]’."].t | leads to terms that contain the functions Y;;?, which are not found in
Equation 5. Hence, one is free to take d :51( j,m,r)=0.

In order to determine the quantity d,, in Equation 8, the equation
vx[VxA(r)] = py J(r) + py v x M(r) ©))

must be solved. From Appendix A, Equations A-3, A-4, and A-5,

I Y A — (d _j+1
VA —\/2j+1[‘/]—(d B r>d0Y;r'7f+1 + ‘/]+l<dr s >doY}7j—1] :
1 [ fa j+2\fd j : d ]'—1(5’ f+1)
VX By ) = — — = =)t D — - — + dy Y™ .
vx( A7m) 2j+1|:]<dr v )(dr r) G )<dr r) 7 r 0 %jj

<i +f+2)<_d_ _£>_<£i__ f—1><1 +f+1>_zi L 24 _JGrD
dr r J\dr r dr r /\dr ¥ dr? rdr 2 ’

and

Now,

as can easily be verified by expansion of the expressions in brackets. Hence,

& 24 jG+1 _
Vx(VxA,)= _[_ L 2d N ):|d0(j,m,r)Yj”]?= - AC)dy G )Y

dr2 r dr 72
Therefore,
oo +j
VA IVXADI =D > -ADdGmnY;0.8) = Hg 3O+ g VM@
j=0 m=-j
Since

f (YR O Y0 @A dR =80 B By



the following equation for d,(j,m,r) is obtained:

d2 2d (741 * ’ ’ '
(__ N 7 )> do(f,m”’)z"“o_/[Y]"? ©' o) [J(r') + V x M(r')] dUr)

dr? rdr 72

=-K(jm,r). (10)

The function d; can now be obtained with the use of Green’s functions. Consider the operator A given
by

d? 2d jg+1)

A()= — + == -
1d<2 d> iG+1)
= ——\rr —y - —.

p2 ar dr r

Consider the integral

I= ] g(APHF? dr
0

[ i<2if>d—’(‘+l) mfd
Ogdrrdr T Ogr‘

If this is integrated by parts twice,

P N " d{f,d o -
- —g| + f—\r*—gldr-j(i+ 1) gfdr. (11
o dr L A dr dr A

If f and g are required to approach zero faster than 1/r as r approaches infinity, and if they are not
infinite at » = 0, the first two terms disappear, and

d
[ =012 —
& drf

f g(ANF dr :f AAF dr . (12)
0 4]
Now, if the solution to the equation
, Sr-r")
A(r)glr,r) = (13)
I8

were known, the solution to the arbitrary equation
AN =f(r) (14)
could be found as follows: Multiply Equation 14 by ?g(r,7') and integrate, so that



f r2gr, ) [AMf()] dr = j g(r, ") f ' (r)r? dr .

0 0

By Equation 12, this reduces to

j 2 FOIA@gr, )] dr = / f8r-r")dr
0 0

=10

Hence, the solution to Equation 14 is

[ = j g(r, P f(r)r? dr.

0

Therefore, the solution to Equation 13 is needed.

Ifr=r,

d? 2d  jG+1
(_ +___;<]2 ):lg].(r,r')=0.

a’r2 v dr 7

The solutions are

Arf+ A'FU*D forr <y
g(rr') = . . ‘
B'rl + Br~U*D forr> ¢

The boundary conditions on g are, from Equation 11, g; approaches zero as r approaches infinity
and g i approaches infinity as » approaches zero. Therefore, A’ =B’ =0 and

Arl forr <y
g;(rnr')= _ :
Br~U*1) forr >
This can be written as
i
<
g:rrh=C ,
7 A+l
>

where r_ denotes the greater of » and r' and r  denotes the lesser of » and ¥'. The constant C can
now be determined so that the slope of g; has the correct discontinuity at » =7".

If one integrates Equation 9 from r = 7' - € to r = ¥’ + ¢ and allows € to approach zero, the value
for C will have been determined:



!

F+e d d r'+e r te
Lim 2 . ’ it ' — o
€—>0 f ar drg]-(r,r)dr ](]+1)[ g;(rr)dr f S(r—r)dr
r'-e — ’

¥ —€ ¥ —€

:1’

- d
a5 | &0

) d )
-ye—g(rr
, drg/

r+e

. d 1\2
bt # ) =—(f+1)C(7> :
r'+e :
and
. d , _[1\2
e A =1C<7) -
r'-e
Therefore,
1
C=-
2 +1
Hence,
7L
g;(rr') =~

. ‘19
2]+1r;+

and the solution to Equation 10 can be written as

. l < . N2 !
dy(jmr)= — — K(j,m,r)r< dr
2j+1 A P+l

>

m 4 ! 172 ’
2]+lf ]+ fY] [J@x) +Vx M@ d2 - dr' .

Outside the source, 7 > 7' always; hence,

Ho rir~m en! * ' ’
dy(G,m,r) = - —a 2]+ljr’[ij(9,¢)] - @)+ VxM()] dv,

where dV is an element of volume defined by r'2 dr' dQ2. Now, the solution for A(r) is

A(r=i 2 2+1 (’¢)~_1

]:0 m=-j

10



where

D, = uofr"'[Y}’; ©'¢'T- 3"+ xMx)] av.

The magnetic flux density B(r) and the magnetic field H(r) outside the source are obtainable from the

relation u, H(r) = B(r) =V x A(r). Hence, from Equation A-5, Appendix A,

oo +]' -
j 1
= -i\/—— D. Y .(0,0)—
B(r) E E | A /2]_+ 1 D, Y;741(0.9) e

=1 m==j

which is of the form of Equation 7 with b = 0.

Using Equation A-10, Appendix A, one may write

1 1
1 — (7 : -12g|
rj+2Y}f’j+1(9,¢) (27 + DG+ )] V|:rf+1ij (9,¢)] .
Hence,
B(r)=—V§, iz\/T e
. SV 27+ 1 e
j=1 m=-j
=~V U(r) .

The term D].m may now be reduced to a more convenient form. Consider the integral

f[Y;;? ©.91" VaQ,
where V is an arbitrary vector. From Equation A-9, Appendix A,

LY,, ©.9)

ViG+1)

b

Y7 (0.9) =

where L =—ir x V. Then,

I=[[L*Y;n 6.6)] * VdS.

In the spherical vector notation,

Hence,

1=j[(L Yo Wy + WS Y0 Wy + LY, W1 dS2.

+1 " jm

11



Now,

L+1=—-——(Lx+iLy)
e (o
————(——— icotf )
\/'5 00 0
L, =—A(L, —iLy)
ef¢<a a)
=-——|=— ~icotf —) ,
V2 00 oo
and
LO:LZ
-— 'a
-....—l--—r N
06
so that

I, :[(L+1}’].m)V+1 ds2

1 : 0 0\« :
== E e+l¢ [(% -icot@ -a—¢>),]mj] V+1 sin 8 d6 d¢ .

Integrating by parts yields

™

1 S
Ly === sin0 [ YL, 0.8V, db
V2 o

10

=2i¢p ™ 2m

V2 ),

e

+ C}m cos 6 P]’" (cos )V, , db

0

1 " 0 -
+—1Y,, (0.0) — (sin 0 V, )e™"® df do
ﬁf a 90 .

- \/—;— Y, (0,¢) cos 6 %(Vﬂe'i"’)de do .

12



Since the first two terms are equal to zero,
- Uy eeyee (S -icoto 2w, |sino a0 d
I+1 - \/—% ]-m( P)e 5-9- i cot 5—(; +1 |SIN ()]

s : .
+ — |Y (0,9)V,,(cos0 e? —cos b e™'?)df do
Noa ]

= _fylf;n 0.9) Ly, V) d.

Similarly,
I, =[[L_1 ij @.9)]1V_, dsd
= - Y;n ©O.0)L_, V) ds2
and
I, =fV0 [Lg Y}, 0.0)] dS2
=ijm 0,0)L,yVy)ds2.
Therefore,

I=[Y]’.';n O0)-Ly, V, ~LLV_ +LyV,)dS
= —jY].m @,p)L" + V dS2
=jY].m(9,¢)L *VdS2.

Hence,

f(Y]'?;)* -VdQ=————1———fY;‘m(L-V)dQ,
ViG+1)

13



so that

Dy = / = ,/er;" O.)IL - Jx)+L - VxMr)]dV.
JjGG+1) :

This can be reduced further; consider

J A VAN LA VI S RN A
X . = - - X - .
(V) ok, o) T\ E, M) T\ e TR ax, )3

9 J 0 J 9 J I J.) + 9 J o J
1 8x2 3 6x3 2/" % &x3 1 ax] 3 3 axl 2 ax2 !

=r-(Vx1])
=] (Vxn=-v-@x])).
Since V x r = 0, one can write
L-J=iV-@xx])).
Now consider L * (V x M). By the previous equation,
L (VxM) =iV +[rx(VxM)]
SIVA[VE - M)-Mx(Vxp)=(r*VM-(M * V)r]
=i[V2@-M)=V -« [(r+V)M] -V - M] .

Now,
. ) 3 3 3 3
A% [(1‘ V)M] = z 5; z Xk a'? M]
j=1 T \k=1 k
- Z 5. e 22,
- m ik ax, ik 9x,, ax]. /
=V M+@-V)V-M).
Hence,
Le(VxM)==i[-V2@ M)+ (r-V +2)V-M].
Therefore,
Mol - e
D, 2\/_—_ ﬁ’ij(9,¢)[V'(rxJ)] dVv - r’)’fm(0,¢)(r'v+2)(V°M)dV
jG+1)

+ /er;n 0.0V (r - M)dV

14



The last integral vanishes upon integration by parts, since vZpl Y;n (0,90) = 0. The second integral can
also be evaluated by integration by parts. The result is

f e+ v +2)(V - M)P2 dr=—(j+v1)/r"V°Mr2 dr .
(0]

Hence,

Mni
- FY,0.8)V « [rxJ+(j+ 1)M] dV .

D,,
viGi+1)

The magnetic flux density can now be written as

= L Y, (0.,0)
0 N~ rx]J jm \o
B ==V Z z Y. . + ————
® 2]'+1fr Y]m @9V (j+1 M>dV j+1
j=1 m=—j ¥
==V U(r).
It is now convenient to write this field in terms of real quantities.
From the definition of Y]m ,
Y, o ©.)=(-1)"7,, (0.6).
Then, if
Qi = f Y, (00 AV Y, (0.6)
and
Q]‘,—m = ]m E
we have
+j J
> 0m =00t D> ©, +0).
m==j m=+1
Now,
— 2j+1 (j_m)! m imo — m ,imo
ij (0,¢)—\/ i Gt P] (cos e —C}mP] e .
Therefore,

Qi * Q;n = C]2m [[P]m (cos 8") cos mo'f(r") dVP].m (cos 0) cos m¢

+/P].m (cos 8") sin mo'f(r") av P[" (cos 8) cos m¢] .

15



One can now write

B(r) =- f— VZ mz]:o(a. cosme + b, sin m¢)P:(J:056) (15)
where
4 =-(z—ajo>8—;:’%i!prm(cose>cos mo v 2 x I M) av (16a)
and
by =2 E;;Tn))!!frme(cos 0) sin me V - [ ]+Jl(r) M(r)] av. (16b)

These quantities will be known as multipole moment coefficients.

Consider now the lowest order term in Equation 15; call this term B,:

K 1
B, =- Vla, PP +(a;, cos ¢ + by, sin ¢)P1] r_2
Ko

=—Zy—rV[a10 cos(9+a11 sin 6 cos ¢ + by, sin@sin¢];—-

___'“0V m-r
47 3

where m is the vector whose components are a;y, by, and a;,. Using Equations 6a and 6b, one can

now write
m=[rlv . [%r XJ(r)+M(r)]} av

This vector is defined as the dipole moment of the system. By Gauss’ law,

jr{V'[—;-rXJ(r)+M(r)]}dV= jr[érxJ(r)+M(r)]'ds+ j{[%rXJ(r)+M(r}]°V}rdV

surface volume

- _ﬂ:% rx J(r) + M,(r)] av

The last form is obtained because the first integral is equal to zero and (A * V)r = A in the second

integral. Hence,
1
m =f [Er x J(r) + M(r)j] dv

16



The significance of this quantity can be understood from the following discussion. Consider an
element of current density J dV and an element of magnetization M dV in a uniform magnetic induc-
tion B. The torque on the current element is given by

dN, =rx [J(r)dV x B]
=rx [Jr)x Bl dV,
and the torque on the magnetic material is given by
dN,, =M@) xBdV .

The total torque is given by an integral over the entire source:

N =deJ +deM

jrx [J(r) x B] x M(x) x B} aV

ﬁ(r)(r *B)dvV + Bfr . J(r)dV+fM(r)deV.

1
fr- Ix)dV = —2-f[J(r) V12 av.
If this is integrated by parts,

f[J(r)-V]r2 dV = jr2J(r)-ds— fr2[v < J(r)] 4V . (17)

surface volume

1l

Now,

The first integral is equal to zero since the current is localized, and the second integral is equal to zero
since the current is stationary (i.e., V * J =0). Hence,

N =f[J(r)(r *B)+M(r)x B] dV.
Consider
I=[J(r)(r *B)dV.

This can be rewritten in a more complicated form:

17



]=f[J(B'r)——;—r(B’J)+ %r(B’J)] dV:l

[an—y

—f(B't)—r(B°J)dV+ %[r(B'J)+J(B'r)dV

[\

- %jBX(rXJ)a’V+ %jr(B-J)+J(B'r)dV.

The second integral can be shown to be equal to zero by the following argument. The ith Cartesian
component of this integral is

3 3
ZIXi(Bij)+Ji(Bjxj)dV= > Bj/(xiJj+Jl.xj)dV.
i=1

j=1

Now,

Therefore,

3 3
> B]j(xiJ]. +Jx) dV = ZBI.fJ C (Y x, +x,V x)dV
i=1 i=1

= 2 B}jJ *VoxxdV

i=1

~.

3
= . — x.V1dV
B]. xl.x].J ds fxlx] d
j=1 surface volume

Both of the above integrals are zero by the same arguments as for Equation 17. Hence,

N=—%jBX[rxJ(r)] dV+jM(r)><BdV

=<J[—;— [rx J(r)] +M(r)} dV>X B

=mxB.

Therefore, in a uniform field, the torque acts only on the dipole moment of the system. If the dipole
moment of the system is known, the torque to be expected in a given field can be computed.

18



CHAPTER I

ANALYSIS OF THE MAGNETIC FIELD

Construction of the Near-Field Equations

It is now necessary to restrict the analysis to the problem at hand. That is, it will be assumed
from now on that the magnetic field is known only at discrete points in space. The coordinates of the
ith point are restricted by

6, =0, w2, 7w,
¥ min SrS rmax’
and
0< ¢,<2m.
Here,r . andr_ . specify the limitations on the radial coordinate and are determined for each speci-

fic case by physical limitations. The measurement of the magnetic field is usually accomplished by
rotating the source about the z-axis past a set of fixed magnetometer probes. The axes of these probes
are aligned with the Cartesian axis of the coordinate system. It therefore makes sense to speak of the
components of the magnetic field that are seen on the sensors rather than the spherical polar compo-
nents. Let us now examine these components in more detail and develop the procedure by which the
quantities of interest (a,,, b,,, and a,;,) may be determined.

From Equation 15, the form the components must exhibit can be determined. The procedure is
to perform first the gradient operation and then, for each value of 6(0, 7/2, 7), make the appropriate
transformation of unit vectors. These transformations are—

=0 0=7/2 0=m
r=u, r=u, r=-u,
0=u, 0 =-u, =-u,
¢ =u, ¢=u, ¢ =u,
LetB ].(r, ¢, cos 0) designate the component parallel to u for a given probe location. For 0 =mr/2,
My - 4 i+ 1
B,(,$,0) =— ! +b,  sin m@p)P™ (0 18
109,0) =7~ o (a;,, cosme¢+b,, sinmdp)P"(0), (18a)
j=1 m=0

19



Mo o= .
Bz(r,¢,0)=—0—z > =@, sinmg -, cos mpP(0). (18b)

W]=1 m=0 r]
and
0 . 0
B,(,$,0) = z —— @y, OS MY+ by, sin mp) — P (0). (18¢)
jt
i=1-m=0"

For 6 = 0 and 6 = 7, the equations are a bit simpler, since at these angles 0P /96 and P].’”/sin 0 are
equal to zero unless m = 1, and the P]’" are equal to zero unless m = 0. Therefore, for 8 =0,

Fo -1 )
B(r¢1)—2; o (alcos¢+blsm¢)5é1’](l) (19a)
j=1
o <& P (1)
B,(re¢,1)= — ——-(alsm(b blcosgb) (19b)
4T * yi n0’
i=
and
j+
B (r¢1)—-——2 —a,oP2(1) . (19¢)
For 8 ==,
#0 .
B,(r¢,~1)= Zr- 1;——(a1 cosgi>+b1 smgb)géP] -1, (20a)
j=
Mg 1 . Pl(-1)
B,(r¢,~1)= Z’;er+2(a].1 sin ¢ ~ b, cos ¢) e | (20b)
and
B, (r.¢,- =—432 p” 0P})(—l) : (20¢)

j=1

Notice now that a Fourier analysis can create two uncoupled sets of simultaneous equations for
each value of the index m (except m = 0, for which there is only one set). For a given value of m1, each
set will involve all the coefficients having that value of m for which j = m. We are interested only in
the three sets involving the dipole-moment components. The sets involving the coefficients a,, and
b, are related only to the fundamental sine and cosine amplitudes of the components B, and B, on
each probe. The set involving a,, is related to the dc amplitude of the B, components.
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In a Fourier series, the amplitude 4 of the sin m¢ term in the function B(¢) is given by

1 2 .
A, = - B(¢) sinm¢ do .
o .

The amplitude of the cos m¢ term is similar, with sin m¢ replaced by cos mé¢. The dc amplitude is
given by

1 27
Ay = 5’_’[0 B(¢)d¢ .

Therefore, given the measured values of the field components, the Fourier analysis can be per-
formed easily to yield the systems of equations to be solved.

Let r; be the radius of the ith probe location. Let B].(ri ,$,cos 0;) be the component of the mag-
netic field seen on the jth sensor of the probe at position i. Let 4 (i, J,cos 6;) be the dc amplitude of
the components B;(7;,¢,cos ;). Let A, (,j,cos 6,) be the fundamental (i.e., m = 1) cosine amplitude
of the component B].(rt.,(b,cos 6,). LetA,(,j,cos 0,) be the fundamental sine amplitude of the com-
ponent B].(rl.,d),cos 6;). These components are given by the following equations:

27
1
A (G, j,cos 6,)= 2—1r f B],(rl.,qb,cos 6,)d¢ , (21a)
()}
1 27
A, (G,j,cos 0,)= ——f B].(rl.,¢,cos 6,) cos ¢ do , (21b)
T
0
and
1 ki
A, (i j,cos ;)= ;j B].(ri,d),cos 6,)sin ¢ de . (21c)
0

By use of Equations 18, 19, and 20, these quantities can be related to the various multipole coef-
ficients. For 01. = 7/2, the multipole coefficients can be equated as follows:

. C ity
A, (,1,0)= E P (0)a,, , (222)
1 piv2 7 il
&
= 1
. — 1
A,3,2,0) = E ———rj+2P]. ©0)g;, , (22b)
=1’ :
. A
A, (G 1,0)= PL0)D., , (22¢)
2 rj+2 ] i1

=17
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z“ 1
: —_— 1
Al(l’zso) - r]""zl)j (O)b]1 )

=17
and,
N —_— 1 *
A,(,3,0)= z rj+2P].(0)a].0 .
J=1 %
For 6 =0,
= 1 9
: - —pl
Aje1D == ) — P (Da
j=1"7
A.a2n = 1 P
I, 4, = .
: Z1 #i*+2 sin 0 %1 >
7= ]
> 1 9
. — - — 1
Az(l;l,l) . rj+2 BOP’(I)b]l s
J=1 7
= le(l)
4,62D=- ) —
L Lj+2 sin0Q 71
=1 '
and
R S A I
4,G31)=> LU
=1 7
For6 =,
- 1 9
A,G1-1)= —Pl(-1)a,
! ) & pj*+2 00 AR
1= i
= 1 P-D)
4,G2-1)= ——
& ,,ij+2 sinw
= 1 9
A - = — pl, .
01D = Y — P,

* 3
551’;” cos 0 =m coterm cost9—}’]'-""'1 cos 6 .

22

~,

—

(22d)

(22e)

(23a)

(23b)

(23¢)

(23d)

(23e)

(24a2)

(24b)

(240)



= 1 PI-D

4,G2-1)== — b, (24d)
& pjr2 sinm 7
7= 1

and
. i+l
Ay@3,-1)=- 5 C D% (24e)
¥

=17

It will be shown shortly that the sums in Equation 22 contain only terms for which j is odd,
whereas the sums of Equations 23 and 24 contain all values of . However, the symmetry of the func-
tions Pm can be used to construct equations containing only odd values of j. To do this, the radii of
the two probes at 6 = 0 and 6 = 7 must be identical (let it be ry)- The Pm (x) have the following
properties:

Bl (=x)= (-1)/""P" (x)
and
_Z-i_ m (. - ]+m+1_a_ m
s L Cx)=CD 55 b0 -

Consider now the term

1 , ) 1 0 0 1
§[A1(1,1,1)+A1(z,1,—1)] =y —a, [—551’,(1) @P,(-l)]

=S L4y 2RI + -1y

]
j=1 r,ﬁ H o
_ 1 0 Pl(l)
i+2 30 %
jodd A

Likewise, all terms of the form
1 .. .
|4 GiD+ 4,657 1)

can be equated to sums involving only odd values of j. Notice also that since P2(+ 1H)=0,
aP1(+ 1)/00 = P1 (+ 1)/sin 0 and apl(— 1)/00 = —Pl (- 1)/sin . Hence,

Al(i,l,k) =-A4,02,k)
and

A,G LK) =4,G2.k),
fork==1.
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Therefore, some of Equations 23 and 24 are identical. Let us, then, construct three new equa-
tions of the same form as those in Equation 22 (i.e., j = odd values only) which contain all the in-
formation present in Equations 23 and 24:

A A= %[Al(i,1,1)+A1(z',l,—1)—Az(i,2,l)—A2(i,2,—l)] R (25a)
A,(A)= :lt-[Az(i,l,l)+A2(i,1,—1)+A1(i,2,1)+A1(i,2,—1)] , (25b)
and
1
A, A)= Z[Ao(i,3,l)+AO(z',3,-1)] . (25¢)

These quantities can be equated to the multipole coefficients as follows:

19
A4,(4) zdd 7 36D (262)
jo
~A,(4) = z L2 by (26b)
2 e r£+2 00 7 j1>e
jo
and
1 0
+A,(4) = 2 — PY(1)a, . (26¢)
) r/];.,.z J ]
jodd

These equations, along with Equations 22, are the equations that must be solved to determine the di-
pole moment of the source. They can be placed in a more convenient form if the quantities P]m cos @
are replaced with their literal form. For example, it is well known that P]p(l) =1 for allj. Hence,
Equation 26¢ may be rewritten

A (A) = 2 L,
0 P r};’z 50 *

Similar results can be derived for the other values of the associated Legendre functions from the gener-
ating function for the Legendre polynomials. Since this function is

F(hx)= (1 ~2hx +K2)1/2

oo

=> Wipw,

j=0
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The quantities le (0) can now be computed as follows. Consider

2 - )
(1 -x)2 L Fx) = 2 nicl=x)2 L px)
0x ox /7
i=0
~W251/2
) (1l —x°) . N
(1 = 2hx + h%)3/2
From the definition of P]?" (x)
s ()"
m _— — —_—
P )= (1 -x°)" (ax> P(x) .
Equation 27 becomes
= n(1 - x*)!/?
2 h’P].l(x)= (d-x7) .
= (1 - 2hx + 2 )32
For 6 =7/2, x = 0, we have
2 hIPLO) = h(1 + K22 . (28)

j=0

The right-hand side of this equation can now be expanded in a Taylor series. The result is

4 6
k(1+h2)—3/2=h<1_§_h2+i..§.£l_-E.E.Ziz..f....)
2 2 22! 2 2 23!

; G-1/2
=S L(.l) B
)

j odd

If this is set equal to the left hand side of Equation 28,

1\-b2
P].l(O) =(-— forj odd,

c!

le 0)=0, for j even.

and

A similar procedure can be followed for 8]’].1(1 )/00. The result is

3 PH(1)

— Pl = =—j(ji+1).
20 T =0 T2UFD
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These values can now be substituted into Equations 22 and 26 with the index j replaced by the

index 2k-1,where k=1, 2,3,...,9. The resulting equations are:
A G10) = R 1>k“1 2k2k- D1 .
16.1,0) = z 2 (k- 1)! r2k+1a2k'1’] ’ a
k=1 7
= N k=Dt 1
A (12,0 =2 - o 29b
2(1,2.0) ( 2> (k= 1)1 2ke1 2k7L1 (29b)
k=1 i
= kQ2k-1)
A 4) = z rerz ) , 29
1 o Ak @2k-1,1 (29¢)
— N 22k - DIT 1
~A,G1,0) = z - b , 30
20 ) < 2> (k= 1! 2k+1 2k=1,1 (302)
k=1 i
=/ k- DI |
~4.3,2,0) = z — b . 30b
162,0) < 2> (k=1)! jak+1 2F711 (300
k=1 i
= k(2k-1)
—AyA) =y S (300)
2k+1 3
k=1 T4
A.13.0) i( 1>k'1 Qk-D 1 Gla)
- Lo, = - _ , a
0 2 (k= 1)! r2k+1a2k 1,0
k=1 i
and
o~ 2%k
Agd) = Y =y - (31b)
k=1 T4

Assume now that the magnetic field is measured by Np different magnetometer probes. This
means that the number of equations in each of the above sets is fixed. Since each of these equations
contains, in theory, an infinite number of terms, no unique solution is possible. One must therefore
make the assumption that each of these series can be approximated by a finite number of terms. This
seems reasonable, since the sums are power series in ¥ ?¥*1) | The higher terms can therefore be ex-
pected to contribute increasingly smaller amounts to the series.

Specifically, in order to obtain a unique solution, the number of unknowns must be less than or
equal to the number of equations. Since the lower order terms are expected to be larger than the
higher order terms, it seems logical to truncate the series rather than to select the various terms to be
included by some procedure.
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The number of equations one is able to construct for a given number Np of probes depends upon
how these probes are deployed. There are basically two configurations that can be considered. One is
formed by placing all the sensors in the horizontal plane. In this case (known as the + 1 configuration),
there are 2Np equations for the X- and Y-axis moments and Np equations for the Z-axis moments. The
other configuration (known as the O configuration) employs two of the sensors above and below the
source (i.e., along the Z axis). Here, there are 2N_ - 3 equations for the X- and Y-axis moments and
N. - 1 equations for the Z-axis moments. No matter which configuration is used, each equation in a
set is of the form

M
yi= D e (32)
j=1

where y; is a Fourier coefficient, Cyi is a known coefficient, and q; is an unknown quantity propor-
tional to the ith multipole moment coefficient. '

Solution of the Near-Field Equations

The problem now is to determine the set of coefficients that best satisfy Equations 32. The cri-
terion for “best” that will be used here is a least squares one; that is, the multipole coefficients will be
chosen to minimize the sum of the squares of the deviations of the calculated Fourier coefficients
from the “measured” ones.

It is now necessary to define several quantities that will be used in the following discussion. Let
f(v) be the probability that if one observes a quantity, that observation will yield the value y for that
quantity. Usually, the values of y form a continuous set. Then f(y) is defined so that f(y) dy is the
probability that an observation lies in a range dy centered at y. The expectation value of a function
q(y) is defined as

<gqg>= fq(y)f(y)dy,

where the integration extends over all the possible values of y (the integration becomes a summation if
the allowed values of y are discrete). The population mean, or true value Y of y, is defined as

Y=<y>

for a very large number of observations.

The variance of a quantity is defined as the average of the squares of the deviations from the true
value. Hence,

vary=<(y-Y)2>.

The covariance of two quantities y and z is defined as

27



cov(y,z)= y-Y)Nz-2ZP

=/(y- YYz-2)f(y,z)dy dz,

where f(y,z) dy dz is the probability that the observations of y and z lie simultaneously in the range dy
about y and dz about z.

In most cases, the probability function f(3) is not known. Also, the number of measurements
available is usually small. Therefore one must estimate the true values of the measured quantities by
some method. An unbiased estimate is one whose expectation value is the true value of the quantity.
Hence, the population mean can be estimated as an average value given by

1 N
TN 2
i=1

Also, the standard deviation of an observation can be estimated from the deviations from the mean v

Vi =y =Y

<D o= [yf‘Y“;lv“iﬁer)T

Hence,
N
<z v12> =(N-1)vary = (N~ 1)g?

i=1

One therefore estimates the variance o2 of the observations by the quantity S? given by

N
z ;-7 )
i=1

~ N-1
The variance of the mean is given by

— vary
vary =
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Hence,

N
z (yi _37)2
i=1

205y
S(y) NV-1)

will provide an estimate of the variance of the mean.

The above discussion can now be extended to more than one variable. Let y, denote the average
of a large number of measurements of a varjable. Let o; be the standard deviation associated with y,.
A relationship of the form

M
v, = z ¢ (33)

j=1

is assumed to exist between the y; and the unknown coefficients q;- The best q; values in a least
squares sense are needed, along with their associated variances. Assume that there are N known y;. Let
us call the right-hand side of Equation 33 the theoretical expression for y; and denote its value (for a
given set of q].) by ¢;.

The least squares postulate states that the best coefficients minimize the mean of the squares of
deviations from the means y,. In symbols,

N
Z ¥, =¢,)*
i=1

should be minimized. However, the scatter of observations about each of the N points is different
(ai2 being a measure of this scatter). Therefore, the deviations should be weighted by dividing by 01.2.
The least squares principle then makes

_ N2
= ;) ] & 5
== > wo,-q) (34)
2
a minimum, with w; = o2 /0? and o2 = a constant.

Differentiating Equation 34 with respect to the q; and equating the results to zero yields the M
so-called normal equations of the system. These can easily be shown to be

M N

N
z Wi = 2 z wicicy) 4;=0- (35)
i=1

=1 \i=1

These equations can be written in standard matrix notation as
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M
D= Gay (36)

j=1

where the substitutions are obvious from the previous discussion. One method of solution is direct in-
version of the matrix G. If this inverse is ¢,

M M M
2 GriDy = z Z P Crj;
k=1 ]

u
INg|
¢
o

= qr .
Hence, the equations are solved, and the quantities ;> given by
M N
G= D b D Wieu, 37)
k=1 i=1

provide unbiased estimates of the true coefficients Zz']

The variance of these quantities is easily determined, since they are linear functions of the y;:

N
2@)= Y (0,970}

i=1
N M M

= 2
z z P WiCix z G WiCir | O
i=1 k=1 r=1

1] 1l {
Mk iM: iMk
Mse Mk
3 £
- >
A
bl
% M
e
Nﬁ
S
Nﬁ
Q
[ (]
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The expression for 02 can now be estimated from the residuals as follows: Consider

M

v, =Y Eci].q].. '

j=1

Since

we can write

<(Vz' - ;i)2> = <V12>

= var v,
M M M
= vary, =2 Z W;C;; COV (yi,q].) + z wl.zcl.].cik cov (q].,qk) .
i=1 i=1 k=1
Now
vary, = o? ,
and
cov (¢;,q;) = <(q,- -q;)(q; - c?k)>
M N M N
(D> deme0,- 1) > D om0 YS)/
i=1 r=1 p=1 s=1
M M N N
=> > > bty wityicy, 0, = V)0, - YD
i=1 p=1 r=1 s=1 ‘
Now
{0, - Y )0, - V) =5, a2 .
Hence,
M M N
cov (q,,q;) = z z z ¢ki¢jrcsrcskws203 )
i=1 r=1 s=1
but
w, =0%/o2 .
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Therefore,

cov (C[]-,Clk)— z Z ¢kl ir z Wscsrcsko

i=1 r=

M
_ 2
= z $i%% 0
i=1

= ¢, 02
Also,
cov (¥,q;) = <()/,~ - Y,)q; - q; )>
M N
= z z Pir Csr Vs <0’i - Y0, - Ys)>
k=1 s=1
M
= Z ¢jkci1c°2
k=1
Hence,
M M M M
varvl.=orl.2 + z z cijcik(b]-kﬂz -22 z ¢; ¢kClk0
k=1 j=1 j=1 k=1
M M
=¢? - z 2 ¢].kcl]clk02
i=1 k=1
Now

N M M N
= w.o2 - ) w.c;.c., | 0
i’ ik i“iftik
; i i=1

i=1 j=1 k=1
M

= No? - Z 6].k02
j=1

= (N - M)o?
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2

Hence, 02 can be estimated as the quantity S? given by

52 =
N-M
Also, the variance of q; is estimated as
2 = 2
§°(q;) = ¢ys
o.. X
vy z w2 . (38)

A Statistical Test

Thus far it has tacitly been assumed that any errors in the y; were due to the net effect of a num-
ber of small disturbances. In this case, the errors will be distributed about the population mean accord-
ing to the so-called “normal distribution” of statistical theory. This means that the probability of ob-
taining a value y; will be proportional to

2
Y=Y,
eXp |~ 3 dy, s
i

If x is a linear function of the y; (e.g., a multipole coefficient), X the “true” value of this func-
tion (corresponding to the Y,), and S(x) the estimated standard deviation of x based on the estimate

N
S2 = z W, /v
i=1

of g2, then it can be shown that the variable

£=(x-X)/S(x) (39)

where Y, is the population mean.

is distributed according to the function

2\~ 1/2)w+1)
fde = I+ = dt .
(&) =

This is often referred to as Student’s distribution, and tables of the variable ¢ can be used to test the
significance of the departure from an assumed true value. In particular, it can be used to construct con-
fidence intervals for the value x. For example, for a given number of degrees of freedom v, the prob-
ability that [/|> t, can be determined from various tables. Let this probability be a. Therefore, it can
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be said that the probability that the deviation from the population mean is greater than £, s(x) in mag-
nitude is a for a given experiment.

This discussion has provided a method by which the various multipole coefficients and their
associated uncertainties can be estimated. This method is based upon one basic assumption: The in-
finite multipole expansion for the Fourier coefficients can be truncated without introducing signifi-
cant errors. The logical question to ask now is what happens if the fundamental assumption is invalid?
That is, what happens in the case when one or more of the multipole coefficients, which were assumed
negligible, actually contributes a significant amount to the Fourier coefficients? The answer is that
the q; will no longer be good estimates of the actual multipole moment coefficients 1. This is appar-
ent from the actual expression for the y;:

¢l + 61‘ .

M

—

iz
The q; can be calculated from Equation 37:
M N M
q; = 2 bk Z WiCik 2 ¢ty +9;
k=1 =1

i= r=1

M N
n; + z 2 wl.cl.k¢>jk5i
i=1

k=1

n.te..
] ]

If the basic assumption is untrue, systematic errors can be expected in the q; which cannot be
eliminated by the above analysis. One can expect the errors e; to change as the order of fit M of the
system is changed. Specifically, e; can be written as a sum over the multipole coefficients from M + 1
to oo . Hence, as the value of M increases, more of the coefficients are eliminated, and the error might
be expected to decrease somewhat. However, this behavior is not definite, and since the error ¢; can-
not be separated from the m,, another procedure must be found by which the accuracy of the q; can
be estimated.
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CHAPTER IV

ERROR ANALYSIS

Introduction

Consider, for a moment, the currents and magnetic material within the spacecraft. The currents
are macroscopic currents flowing through coils which permeate the source. Given currents of this type,
a magnetization density which will produce an identical magnetic field outside the source can, in
principle, be determined. This magnetization density will not vary appreciably over small distances.
This is also the case with the magnetization of the magnetic material. The spacecraft source can there-
fore be divided into macroscopic subvolumes whose magnetizations are fairly uniform. Each of these
subvolumes can be considered to contain a point dipole source whose magnitude and direction are
determined by the average magnetization density in that subvolume. By adjusting the size of each sub-
volume, the magnetic field of this ensemble of point dipoles can be made to coincide with that of the
actual spacecraft to any desired degree of accuracy.

Actually, a procedure such as this would be impossible; but the point is clear: The spacecraft can
be represented by a finite number of point dipole sources, and its field can be written as the sum over
a finite number of these point dipole fields. It would, therefore, seem that the determination of the
dipole moment of a point dipole source is of fundamental importance, and that the errors that arise in
this case are definitely related to those of the general case.

Let m(k) be the moment of a point dipole located at the point P specified by the position vector
k. Let the field produced by this dipole be measured by N probes in either the +1 or the O configura-
tion, as in Figure 2. The magnetization density M(r) Wthh describes this source is representable by

M(r) = m(k)é(r - k) .

This magnetization will give rise to the multipole coefficients of the system as given in Equations 16.
Upon integration by parts, it will be found that integrals of the form

j' fOV - g)dVv

volume

may be written as

- f 8 * V() dV .

volume
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Figure 2—Probe configurations for typical test situations (Sp = 2k/rq and rj=nr /rj).



Hence, a; (k) is

> Yim
(j—m)! . om
a;,,(K)=(2-8,) mfm(k)&(r—k) » V rj PI" (cos 0) cos m¢ d°r

—2-5.) LML ) - VP (cos 0) sin mé (40)

107 (j+m)! / -

Similarly, for b].m k),

b, (k)=2 (G- m)! m(k) * V7 P™ (cos 6) cos m¢ (41)

m (j +m)! ! .

The only coefficients of interest in this case are those for which m = 0, 1 and j = odd. Therefore,
define

n(1K) =ay, &), (42a)
n(2.K) = by, 1 (), (42b)

and
ni(3.K) =y, o), (42¢)

which one can write as
n].(s,k) =m(k) ° h].(s,k) .
As before, the actual Fourier coefficients for the sth axis can be written as

oo

v, (s,k) = z cl.].(s)n].(s,k) .

j=1

Now, the least squares coefficients g,(s,k) can be determined as before from Equation 37:

M(s) N(s)
q,(sk) = 6, () 2 €y W)y (5.K)
p=1 i=1

o M(s) N(s)

2 z 2 b, ()cy, ()W, (s)c;;(s)m; (s, k)

j=1 p=1 i=1

oo M(s) N(s)
=n,(sk) + 3, ($Iw;(s)c;, (s)c; (sIn, (s, k)
szz(s)H le Z r P j J
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oo M(s) N(s)
=1 (s k) + m(k) * z 2 z 8, , OW;(5)c,,, (8)c,; () (k)

j=M(s)+1 p=1 i=1
=n,(s5k) + mKk) * Q. (sk). (43)
Hence, the error in the coefficient q,(s,k) is represented by the term m(k) * Q,(s,k).

Consider now an assembly of point dipoles. The results can be written immediately from a
summation over all vectors k. Therefore, the least squares coefficient g, (s) is given by

2 q,(s,k)
k

D a6+ > m - Q6K

k k

q,(s)

n)+ D mE) - QK

k

n,(s) + e (s) ,

where

o6 = > mk) - QEK)

k

if m(k) is discrete, or

e,(s) =fm(k) * Q,(sk) &’k ,

if m(k) is a continuous function of the vector k. Now if one could say
q,)=n(s) £48,

where the magnitude of 6§ were known, one would know the limits within which n,(s) must lie.

Consider therefore ler(s)| such that

le.®)| = f m(k) * Q. (sk) °k

< jlm(k) " Q,(sk)|d’k
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< f\m(k)\ Q, (1) |3k

< QT(s,k)flm(k)\d3k,

where Q;" (5, k) is the maximum value of the magnitude of Q, (s,k) for any vector k (within the confines
of the source). Similarly, for discrete values of m(k)

e, |<QreK > [maol.
k

Now, the vector Q _(s,k) and the quantity Q;" (s, k) are independent of the source in question.
Assume for now that they can be determined by some procedure and hence are known. The error is
related to the particular source through the terms

flm(k)[d% or > |m@o).

k

This quantity represents the magnitude of the maximum possible dipole moment of that particular
source. It is, in general, impossible to calculate. Therefore, some method of estimation must be
devised.

The magnitude of this term is dependent upon the magnetic components within the source. If
they are weak, the term will be small. If they are strong, the term will be large. Such is the case with
the magnetic field of the object. If the components are weak, the field will be small; if they are strong,
the field will be large, independent of what the dipole moment is. Also, in the case where

Um(k)d3k éf|m(k)|d3k,

the dipole moment will usually be large compared with the other moments. Hence, as a fairly good

approximation,
q Bl 2 1/2
3kl = | = {=B2 2 3
'fm(k)d k| = [4( 3 +szp> +B3p] rf—Be , (44)

where ijp is the maximum field excursion seen on the jth sensor of the most distant probe during a
rotation, B].p is the maximum value of the field seen on the jth sensor of this probe, and rr is the radius
of this probe. In the cases where the dipole moment is small, the right-hand side of Equation 44 will
still be a quantity which will give a measure of the magnitude of the field of the source. The assump-
tion will therefore be made that

f Im@0)|a’k = B, (45)
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in all cases. This assumption is not really critical as long as the estimate of ¢ ,(s) is not so large that it
is useless, or so small that it is unrealistic. Still, it is an assumption whose vahdlty must be tested fur-
ther. The discussion of this assumption will be deferred until later.

Single-Dipole Error Functions

The form of Q,(s,k) must now be examined. Evaluate the quantities n; (s,k); using Equations 40,
41, and 42, and the Cartesian components of the operator V in the spherlcal polar coordinate system,

write the n; as

n;(1,k) = m; [Sy;(k) cos® ¢, +S, (k) sin® ¢, ]
+ mz[Sll.(k) - Szj(k)] cos ¢, sin ¢, + m3S3].(k) cos ¢ ,
n].(2,k) =m, [Slj(k) - Szj(k)] cos ¢, sin ¢,
+my [S;,(K) sin® ¢, +5,,(k) cos® ¢, 1 +m,S, (k) sin ¢ ,
and
n].(3,k) = m1S4’.(k) cos ¢, + m254].(k) sin ¢, + m3S5i(k) ,
where m; = the jth component of m(k) and

2j-2 cos 6

. k 0
Slj(k) = [sm 0, P%]._l(cos 0,)+ -1 Y: P%]._l (cos 0")} ,
. 1
K22 | Py, (cos@,)
8y K) = —— {2’.1 =1,
! i2j- 1) sin 0,
2j-2 sin Bk
§;,(k) = cos 0, P2 _(cos 6 )— ~T 3 %J._l(cos Gk)J ,

S4;(K) = k272 [(2f = 1) sin 6, Py, (cos 6,) = cos 6, P}, (cos 6,)] ,
and

S5, (k) = k72 [(2] = 1) cos O Py;_(cos 6,) +sin 6, PL._ (cos 6,)] .

The quantity er].(s) is now defined as
M(s) N(s)

€,;(s) = z Z 6,p GIW; (), ()c;(s) -

1 =1

1]

p
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The quantities m(k) * Q, (s, k) can then be written as
m(k) * Q,(1,k) =m, [E, (1,k) cos? ¢, +E, (1,k)sin® ¢, ]
+m,[E, (1,k) —E2r(1,i()] cos ¢, sin ¢, + m,E; (1,K) cos ¢, »(46a)
m(k) * Qr(2,k) =m, [Elr(2,k) —Ezr(2,k)] cos ¢, sin (o
+myE|(2,k) sin? ¢, + E, (2,k) cos? ¢, 1 +m,E, (2,k)sin ¢, , (46b)

and

m(k) *+ Q,(3,k) = m1E4r(3,k) cos ¢, +myE, (3,k) sin ¢, tmyaEs (3,k). | (46¢)

where

©o

E, (s,k) = Z €,/()S,,(K) .

J=M(s)+1

Examination of Equations 29 and 30 reveals that the near-field equations for the x and y axes are
identical in form. Hence, if the weights w, in Equation 34 are the same for each axis (which they will
be), erj(l) = er].(2) forallr andj. Also, since only the errors in the dipole components are of interest,
all the Ejr(s, k) for which r # 1 can be neglected. The dipole errors m(k) * Q, (5, k) can now be written
in terms of only five error functions. These functions are defined as follows:

E].(k) =E].1(1,k) =E].1(2,k) , for j=1,2,3;
and
E].(k) = Ej1(3,k) R forj=4,5.

The value of the function Q, (s, k) may be determined for any values of k and 6, by analyzing
suitably chosen single-dipole sources. For example, let the source consist of dipole whose moment is
m (components my , m,, and my ) located at the point k = (k, Gk ; ¢, = 0). Three determinations of the
least squares dipole-moment components (for three different sets of the my, m,, and m,) on each axis
are necessary for a complete definition of the vector Q, (s, k) for a particular probe configuration and
least squares fit. Hence, if my; =0,m, = m4 = 0, Equations 43 and 46 give

q,(1)=m; +m E,(k),

q,(2)=0,
and

q,(3) =m, E,(K)
Similarly, if m, # 0, my; =m, =0,

q,(D=q,(3)=0
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and
q,(2)=my + myE,(K) .
Also, for m, #F0,m; =m, = 0,

q,(1) = myE5(K) ,

q,2)=0,
and

q,(3)=my + m3E5(k) .

Hence, the value of Q, (s, k) is known for the vector k. Since the ¢, -dependence of the function is
known, Q, (s, k) is really known on a circle of latitude specified by the angle 6, ona sphere whose
radius is k. In principle, therefore, the vector Q, (s, k) can be completely determined if this procedure
is repeated for all values of k.

Having done this, one must compute
2
0, 0|” = Q) - Q. K) .

from Equations 46:

[Ql(l,k)|2 = {[El(k)]2 + [E3(k)]2} cos? ¢, + [E,(X)]? sin® ¢ ,

1Q1(2,k)|2 = {[El(k)]2 + [E, (k)12 } sin? ¢, + [E,(k)1? cos? ¢ ,
2 _ 2 2

|,G.0)|" = 1E,0012 + [E50012 .

Clearly,
[QM(1,1012 < {[E,®)]> + [E,(012 ), + [E,(012,, = 0",
[Q%LMP<§“Q&H”+MNMZMM+MMMKW=QH
[QY (3,012 < {[£,0012 + [Eg(0)1?} 10y = 07 -

Therefore, the possible systematic errors |e1 ) I in the dipole components can be estimated from
the expression in Equation 45 for J _\m(k)| d3 k. Hence, for an estimate of \el(s)| ,

e, (D] =|e,@]= 0" @08, (47a)
and

le,®|= 03B, . (47b)
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In summary, then, the procedure for dipole-moment determination should proceed as follows:
Specify a given number NV » of magnetometer probes deployed in either the zero or the +1 configura-
tion about the magnetic source. Then, rotate the source through 360 deg to obtain the three compo-
nents of the magnetic field at each probe location. Now, Equations 21 will give the appropriate
Fourier coefficients. If the zero configuration is used, the values of A 1(A4), A, (A), and 4,(A4) must be
calculated from Equations 25. The next step is to solve for the dipole-moment components axis by
axis. For each axis, first determine the order of fit M(s) desired, and then set up the appropriate near-
field equations to be solved (Equations 29, 30, and 31).

The least squares analysis now proceeds with the formation for each axis of the matrices D and G,
as defined in Equations 35 and 36. For the weights w;, 1/ 01.2 must be used, where o; is the uncertainty
in the measurement of the values of the magnetic field used to calculate the F ourier coefficient Y,.*

The next step is to invert the G matrix and determine the least squares dipole-moment coefficient
q,(s) from Equation 37, and its associated uncertainty S2 [g,(s)] from Equation 38. Confidence limits
on the value of ql(s) can be determined from the table of ¢-values with N(s) — M(s) degrees of freedom
[N(s) is the number of equations] and Equation 39. The confidence limits will be given by 7.5 ()],
where a is the probability of a value of ¢ greater than 7, .

Now the possible systematic error in the answer must be determined. First, estimate the maxi-
mum moment of the source by using Equation 45. Then, determine the value of Q%(k) appropriate to
the particular probe configuration used, the sample volume, and the order of fit for the sth axis. This
can be done by the rather tedious procedure presented in the last section. Once this is done, the error
can be estimated from Equations 47a or 47b.

Obviously, the procedure described would be very tedious if done by hand. However, on a com-
puter the task is easily accomplished. Let us now turn to the task of evaluating the procedure.

*These can be taken to be the calibration accuracy of the probe.
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CHAPTER YV

EVALUATION

Quantitative Tests

Thus far, the theory has been developed qualitatively. The equations and procedures have been
developed without consideration of any experimental limitations that may be present. Also, the fun-
damental assumption upon which the method is based has been justified by a more or less intuitive
argument. There is no way to determine how often this assumption can be expected to hold true.
Therefore, it is necessary that some procedure be devised to test this method in order to determine its
feasibility as a technique for determination of the dipole moment of a spacecraft.

The simplest way to do this is to use the near-field method to determine the magnetic moments
of sources whose actual moments are already known. If the sources selected for analysis are numerous
and varied, general conclusions can be drawn as to the validity of this technique. Specifically, the test-
ing program is aimed at answering these questions: Can one expect to determine a reasonably accurate
value for the dipole moment of an object by this procedure, and is the uncertainty in this number
small enough to be useful?

In view of the complexity of the calculations involved in such an analysis, the test program was
carried out entirely on a computer. That is, a program was written which would generate magnetic
data for a given set of arbitrarily located point dipoles and then analyze these data by the method pre-
sented above (see Appendix B). In this way, a large number of different cases could be analyzed in a
short time. These cases would also be free from any experimental error which could be confused with
the systematic errors associated with the technique itself. To determine the sensitivity of the technique
to the experimental errors, provisions were also made in the program to introduce errors into the data
which would simulate errors encountered in an actual test.

A modified version of this program was used to determine the error functions E].(k) on spheres of
different radii. Hence, the systematic errors could be estimated for each test case by the foregoing
procedure.

Test Procedure

In these tests, it was assumed that the maximum number of magnetometers available would be
four. The major parameters of interest in a test were the ratio of the source diameter to the radius to
the closest sensor, and the order of fit of the near-field equations. The parameters varied from test to
test were the radii of the various probes and the configurations of these probes.
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The tests were conducted in three sections. The first section was concerned with the determina-
tion of the moment of a single point dipole located somewhere within a sphere of known diameter.
These tests were fairly extensive and the results used to compute the error functions £ ].(k) for a given
probe configuration, order of fit, and sphere diameter. -Also, the order of magnitude of each of the
lower order multipole coefficients in the near-field expansion could be estimated from these results.
This is helpful in attempts to estimate the magnitudes of the coefficients of an aggregate of dipoles.
The results were also helpful in determining the effects of machine error in the computations and the
behavior of the least squares coefficients as a function of the order of fit.

The second section of the tests was concerned with multiple magnet sources. Naturally, these
tests could not be as extensive as the ones above, because of the many possibilities in the construction
of the sources. Sources containing up to 28 dipoles were analyzed. For a given probe configuration,
the moments, and their variances, of each of the sources were determined as a function of the order of
fit.

In the third section, the same sources as in the second section were analyzed. In this case, how-
ever, the data were adjusted to simulate real data, and the effect on the calculations was studied.

In an experimental environment, there will be a minimum observable change in the magnetic field
because of the limitations of the instrumentation. This threshold value will not be constant but will be
dependent upon the values of the magnetic field seen on the sensors.* Real data will therefore be sub-
ject to a minimum uncertainty. Also, the magnetometers have a certain calibration accuracy that must
be taken into consideration. Errors in the data within these limits were also introduced.

Obviously, all possible errors could not be simulated. The reason for these tests was to determine
whether or not errors of the type described previously are detectable from observations of the calcu-
lated values of the multipole moments and whether or not limits could be placed on these moments
when this type of error was present.

- Each source was tested using from one to four probes in both the zero and the +1 configuration. -
This procedure permitted each of the various probe configurations to be evaluated.

*The magnitude of the fields observed will determine the range setting of the magnetometers. The higher the range, the greater the
threshold value will be.
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CHAPTER VI

RESULTS

Accuracy

The tests show that this method of analysis is indeed effective. They also allow general pre-
dictions to be made about its capabilities in a given situation. Of primary interest is the accuracy
of this technique.

The accuracy of this technique (defined here as the ability to predict the correct values for
the dipole-moment coefficients) is a function of several variables. These variables can be divided
into two classes: (1) Variables associated with the magnetic source itself and over which one has no
control (e.g;, strength and location of the magnetic components); and (II) variables associated with
the technique (e.g., number and location of the probes and the order of fit to the near-field equa-
tions). The variation in accuracy produced by the Class I variables is the most significant and,
unfortunately, the most difficult to deal with. That produced by the Class II variables is for the
most part predictable and is usually much smaller than the variation due to Class I parameters.
Therefore let us consider Class II first.

The Class II variables can in turn be divided into two subclasses: (1) physical variables such
as the number of probes and the configuration of these probes, and (2) the order of fit. There
appears to be a complicated interrelationship between the accuracy and the physical variables.
Studies of the error functions £ ].(k) for each probe arrangement possible with from one to four
probes and for several different sets of probe radii show that there is a definite change in accuracy
if one of the parameters is changed; however, this change is usually small. The numbers 01(k) and
Q3(k) are a measure of the maximum possible error in the measurement of a magnet located on the
surface of a sphere of radius k (see Figure 2). The characteristics of different probe configurations
are shown in Table 1; corresponding values of Q! and Q3 are shown in Tables 2 and 3 for different
size parameters Sp (defined as the source diameter divided by the radius to the closest probe) and
order of fit.

These results permit one to compare the various probe configurations. In general, a given num-
ber of probes in the + 1 configuration are more accurate than the same number of probes in the
zero configuration (for a certain sample size and order of fit). In addition, the probes provide more
information* about the magnetic field of the source, and this information permits calculations to be
carried out to higher order.

*That is, the number of equations for a given axis is larger than for the zero configuration.
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Table 1-—Selected probe configurations.

- . Number of Probe Radii (rlj. = rl/r].)
Configuration Type Probes
11 F12 F13 "4
1 +1 4 1 2/3 1/2 2/5
2 +1 4 1 1/2 1/3 1/4
3 +1 4 1 5/6 5/7 5/8
4 +1 3 1 2/3 1/2
5 +1 3 1 1/2 1/3
6 +1 2 1 2/3
7 0 4 1 2/3 1 1
8 0 4 1 1/2 1 1
9 0 4 1 2/3 1/2 1/2
10 0 3 1 1 1

For probes in the +1 configuration, it appears that the accuracy decreases somewhat as the
probe spacing decreases. However, this effect is important only for very close spacing, and in

general the variation of accuracy is unpredictable. This means that one can assume that the
probe spacing is not critical.

The order of magnitude of the change in accuracy as a function of the order of fit is also
observable in Tables 2 and 3. This change is obviously more drastic than the other changes and
is definitely predictable. The tables show that as the order of fit is increased, the accuracy im-
proves. The apparent discrepancy observable in the higher orders of fit is believed due to
machine errors in the computations. This point will be discussed more fully later.

The same behavior was observed when multiple dipole sources were tested.* That is, the
absolute accuracy remained about the same for all probe configurations tested with a particular
sample and a given order of fit and got increasingly better as the order of fit was increased.
Again, the discrepancy in accuracy was noted as the order of fit became fairly high, and as be-
fore, it was assumed to be due to machine error.

The variation as a function of the size parameter Sp is also easy to characterize. As the
size of the sample is increased, the accuracy decreases. This is due to the increase in the magni-
tude of the multipole moment coefficients as the magnetic material is displaced further from the

center of the object. This type of variation is really tied in with the Class I variables, which
are considered later.

The accuracy as a function of the source parameters is much more difficult to analyze.
This accuracy is dependent on the values of the various multipole moment coefficients of the

*The data used in these analyses were considered “perfect”.
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Table 2—Values of Q! for selected probe configurations.

Size
Parameter Sp

Configuration

Order of Fit

1 2 3 4 5 6 7
0.4 1 0.13901 | 0.0039488 | 0.00003915 | 0.00001025 | 0.00000349 | 0.00000995 | 0.00000837
2 0.12232 | 0.0039475 | 0.00006992 | 0.00000291 | 0.00000259 | 0.00000574 | 0.00000175
3 0.12824 | 0.0045939 | 0.00009143 | 0.00001109 | 0.00000595 | 0.00004668 | 0.00056881
4 0.13944 | 0.0040254 | 0.00003694 | 0.00001092 | 0.00000445
5 0.14551 |} 0.0037651 | 0.00007186 {0.00000317 | 0.00000402
6 0.14089 | 0.00419 0.00001967
7 0.081034 | 0.018571 | 0.00039829 | 0.00000672
8 0.087116 | 0.019120 | 0.00036852 |0.00000837
9 0.13830 | 0.0015225 | 0.00011698 | 0.00000350
10 0.088199 | 0.019279
0.6 1 0.29908 | 0.01812 0.00040640 | 0.00003516 | 0.00000569 | 0.0000173 | 0.00001552
2 0.26348 | 0.018058 |0.00071926 |0.00001203 | 0.00000423 | 0.00000950 | 0.00000270
3 0.27632 | 0.020997 |0.00092398 |0.00003790 | 0.00001026 | 0.00009265 | 0.0011069
4 0.29999 | 0.018466 |0.00038315 |0.00003621 | 0.00000737
5 0.31291 | 0.017250 {0.00073907 |0.00001258 | 0.00000662
6 0.3031 0.0192 0.00020491
7 0.24835 | 0.097130 |0.0045043 |0.00003703
8 0.26437 |0.099920 |0.0041643 {0.00018160
9 0.29747 | 0.0067129 {0.0012293 |0.00001845
10 0.26738 | 0.10074
0.8 1 0.52035 | 0.054118 [0.0020232 |0.00030860 | 0.00001208 | 0.00002730 {0.00002628
2 0.45609 | 0.054393 |0.0037083 |0.00010345 | 0.00000640 | 0.00001412 |0.00000369
3 0.47795 |0.063327 ]0.0048125 {0.00033310 |0.00002863 | 0.00017379 |0.0020098
4 0.52196 |0.055190 |0.0019150 |0.00031762 {0.00001466
5 0.54547 |0.051762 10.0038109 |0.00010783 | 0.00000988
6 0.52750 |0.057537 [0.0010723
7 0.63746 | 0.32796 0.025616 0.00039433
8 0.67300 | 0.33698 0.023657 0.0017447
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Table V2 (continued)—Values of Q! for selected probe configurations.

. Order of Fit
p Slzte s Configuration
arameter S, : ) 3 4 5 6 7
0.8 9 0.51801 } 0.022397 | 0.0063067 | 0.00016617
10 0.68006 | 0.33967
1.0 1 0.85543 | 0.14429 0.0079381 | 0.0021425 | 0.00009264 | 0.00004305 | 0.0004290
2 0.74244 | 0.14615 0.015732 0.00068123 | 0.00001328 | 0.00002001 | 0.00000468
3 0.77575 | 0.17022 0.020620 0.0023200 | 0.00027406 | 0.00035247 | 0.0036208
4 0.85814 | 0.14723 0.0073447 | 0.00220801 | 0.00009856
5 0.89990 | 0.13863 0.016169 0.00071035 | 0.00001591
6 0.8676 0.15383 0.00373
7 1.5286 091619 0.10295 0.002561
8 1.6045 0.94099 0.094992 0.010326
9 0.85274 | 0.06508 0.023189 0.00088478
10 1.6203 0.94833
1.2 1 1.4622 0.37326 0.027578 0.013383 0.00080394 | 0.00009329 | 0.00007073
2 1.2464 0.38442 0.062195 0.0039409 | 0.00007129 |0.00002966 | 0.00000570
3 1.2959 0.44705 0.082707 0.014533 0.0025463 (0.0011433 | 0.0062675
4 1.4670 0.38128 0.024838 0.013825 0.00084557
5 1.5474 0.36242 0.063934 0.0041143 | 0.00005070
6 1.4842 0.40011 0.010361 .,
7 3.7073 2.4203 0.34892 0.012653
8 3.8748 2.4811 0.32174 0.046700
9 1.4608 0.18972 0.079101 0.0039053
10 39110 2.4999°
1.4 1 2.7402 1.03678 0.093961 0.085541 0.0075137 |0.00099240 | 0.00022100
2 2.2770 1.0917 0.25550 0.022826 0.0054193 | 0.00006971 | 0.00000866
3 2.3508 1.26175 0.33878 0.092237 0.025252 0.068796 0.11577
4 2.7500 1.0603 0.08050 0.08859 0.0078824
5 29211 1.0220 0.26269 0.02386 0.00033284
6 2.7839 1.1182 0.031555




Table 2 (concluded)—Values of Q! for selected probe configurations.

. Order of Fit
Size .| Configuration
Parameter Sp 1 ) 3 4 5
1.4 7 10.033 6.8975 1.1750 0.056014
8 10.456 7.0636 1.0833 0.20573
9 2.7448 | 0.58509 0.27260 0.015633
10 10.5509 | 7.1163
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Table 3—Values of Q3 for selected probe configurations.

. Order of Fit . Order of Fit
Size Configuration Size Configuration
Parameter Sp 1 5 3 Parameter Sp ) 5 3
04 1 0.1566 0.0051880 | 0.00008308 1.0 1 0.83068 | 0.14346 0.012987
2 0.16362 0.0030402 | 0.00002303 2 0.87703 | 0.081955 | 0.0039768
3 0.14484 | 0.0072891 | 0.00025152 3 0.74015 | 0.21665 0.046100
4 0.1573 0.0054296 4 0.83341 | 0.15065
5 0.16386 | 0.0032509 5 0.87833 | 0.087407
6 0.15876 6 0.84315
7 0.21510 | 0.018625 7 2.6890 0.91858
8 0.21749 | 0.01904 8 2.7140 0.93646
9 0.13605 | 0.0034622 9 0.73895 | 0.11821
10 0.21795 10 2.7192
0.6 1 0.32077 | 0.023574 0.00084925 1.2 1 1.5463 0.40008 0.051806
2 0.33434 | 0.014003 0.00024306 2 1.6400 0.21115 0.012235
3 0.29842 | 0.032721 0.0024838 3 1.3518 0.62490 0.20518
4 0.56441 | 0.097380 4 1.5515 0.42064
5 033481 | 0.14964 5 1.6425 0.22673
6 0.32494 6 1.5704
7 0.56441 | 0.099480 7 6.0039 24179
8 0.57038 | 0.024655 8 6.0565 2.4623
9 0.27673 | 0.016863 9 1.3848 0.23419
10 0.57154 10 6.0676
0.8 1 0.50401 | 0.064527 0.0040985 14 1 3.0718 1.1283 0.20238
2 0.52386 | 0.039034 0.0012096 2 3.2770 0.57289 0.044889
3 0.47259 | 0.088139 0.011496 3 26112 1.8461 0.89865
4 0.50548 | 0.67424 4 3.0825 1.1886
5 0.52457 | 0.041678 5 3.2820 0.61591
6 0.51036 6 3.1219
7 1.2568 0.32968 7 15.396 6.8312
8 1.2693 0.33647 8 15.525 6.9503
9 0.43033 | 0.05086 9 2.7694 041841
10 1.2718 10 15.553




source under observation; hence, it varies greatly from source to source. As mentioned above, when
the size of the source is increased, the error usually increases; however, when sources of the same size
are examined, predictions about the absolute accuracy of the results are in general difficult to make.
In fact, unless one has more information about the source than its physical size, absolute predictions
are impossible. That is, it is impossible to say, for a given set of physical parameters, order of fit, and
source dimensions, that the dipole moment of any source can be calculated to within so many mag-
netic moment units. This is because the magnitude of the error is dependent upon the strengths of the
magnetic components of the source: The more “magnetic” the source, the larger the error will be.

The tests do show, however, a limit (in magnetic moment units) on the magnitude of the error for
sources of a particular size and magnetization as a function of the order of fit.

Table 4 shows the maximum errors observed as a function of the order of fit and sample size for
54 samples containing from 9 to 28 magnetic components (most of which were located at the outer
edge of the source). These numbers were obtained with the probes in configuration number 1 (see
Table 1). Since the horizontal and vertical moment calculations are inherently dissimilar, separate
entries are made for each. The value of the actual dipole moment, M, is shown to the right of the
observed error 0.

This table is not meant to give any general accuracy predictions. However, the magnitudes of the
magnetic components in the sources are much larger than are usually found in a spacecraft; hence, the
errors in this table are expected to be larger than those actually seen. If some other source were tested,
larger errors could very conceivably be obtained.

Let us now turn to the question of whether or not one can estimate the accuracy of a given cal-
culation: first, for ideal data (i.e., data for a perfect system) and second, for real data that is subject
to errors of some type.

Effect and Estimation of Errors

In the tests described above, errors in the calculations are either machine errors or systematic
errors. As one can see from Tables 2 and 3, machine error becomes apparent only at the higher orders
of fit; this error is due to the rounding off of the numbers calculated by the computer. This effect is
also illustrated in Table 5, which table presents the variation of the calculated multipole fields* for a
centered dipole as the order of fit is varied (again for probes in configuration number 1). Note that
even at its worst, this effect is very small in the dipole moment and can usually be neglected.

The systematic errors obviously are not negligible; however, they can be estimated by the proce-
dure described in the text. This was done for each of the sources tested. Table 6 compares the cal-
culated systematic error limits with the observed errors shown in Table 4. These numbers are represen-
tative of the results in general in that in every case tested, the observed error was less than the limits
calculated by the estimate of |e (s)] given by

*These numbers are the multipole coefficients (zzzj_1 1) divided by the smallest radius raised to the 2j + 1 power and hence are in
the magnetic field units (nanotesla).
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Table 4—Largest errors observed in dipole-moment calculations (values in 1073 A-m? ).

Order of Fit
Size
Parameter 1 2 3 4 5
Sp
0 M 0 M 0 M 0 M 0 M
04 H 222.3 2512 3.6 144 0 0 0
V 189.0 972 3.5 640 0 — —
0.6 H 477.1 2512 18.3 1604 0 0 0
V 444 0 972 15.7 640 0 — —
0.8 H | +795.1 2512 58.0 1604 2.1 1850 0 0
V 822.0 972 41.1 640 3.5 640 — —
1.0 H 1146.2 2512 148.0 1604 6.9 1850 2.1 1604 0
V 1308.0 972 111.0 275 17.4 972 - —
1.2 H 1499.0 2512 353.0 1604 18.1 1500 11.7 1604 0
V 1825.0 972 287.0 275 57.3 972 - -
1.4 H 1855.0 1500 881.0 1604 57.0 1172 67.8 1604 5.0 1604
V | 2388.0 275 761.0 275 155.0 572 — —

Note: 6 = observed error.
H = error in horizontal dipole-moment component.
V = error in vertical dipole-moment component.
M = true value of dipole-moment component.
0 = errors less than 10~3 A-m2.
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Table 5—Calculated x-axis multipole coefficients for a centered dipole for probe configuration 1 (values in nanoteslas).

Order of Fit
Coefficient
1 2 3 4 5 6 7
ay 80.0 80.0 79.999999618 80.000004821 80.000039196 79.993561739 79.987034380
a, 0.0 | -0.000000507 0.000019175 0.000158821 -0.054924022 | -0.154667296
ag -0.000000202 0.000024517 0.000295795 -0.197767705 | -0.905817656
a, 0.000009742 0.000252243 —-0.338142809 | -2.742426869
aq 0.00079690 -0.269945145 | -4.308601377
a —-0.081082108 | -3.295361917
a4 -0.967441047
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Table 6—Comparison of the observed errors with the estimated systematic error limits (values in 1073 A-m? ).

Order of Fit
Size
Parameter i 2 6
SP
6 E 0 E 0 E 0 E 0 E E
0.4 H 222 522 3.6 11.8 0 0 0 0 0 0 0
14 189 531 3.5 22.5 0 0
0.6 H 477 1137 18.3 43.70 0 1.8 0 0 0 0 0
|14 444 1149 15.7 103 0 3.7
0.8 H 795 2005 58.0 136 2.1 6.6 0 131 0 0 0
V 822 1918 41.1 288 3.5 18.3
1.0 H 1146 3352 148 381 6.9 27.2 2.1 5741 0 0 0
V 1308 3359 111 266 17.4 52.5
1.2 H 1499 5821 353 1046 18.1 131 11.7 3751 0 3.8
V 1825 6638 287 854 57.3 222
1.4 H 1855 13730 | 881 3144 57.0 | 378 67.8 | 259 50 {228 2.8
V | 2388 7636 | 761 2805 155 818

Note: 0 = observed error.
E = estimated error limit.
0 = errors less than 10~3 A-m2.




le, (D] = le; @] = 0'w)B, (472)
and
v e 3] = 028, . (47b)

Note that for the lower orders of fit, the estimated errors are quite large. This indicates that in order
to obtain meaningful results, a given calculation must be made with order 2 or greater. The minimum
order of fit is dependent on the value of Q! or Q3 for a given sample size and probe configuration.
Values of Q! or Q3 of the order of 0.01 or less will give acceptable limits. Using these criteria, the
minimum orders of fit can be determined for the probe configurations given in Tables 2 and 3.

The results of these tests indicated that the technique is indeed a useful method of dipole-moment
determination if the data used are almost perfect. In an actual test situation, however, this is not the
case. Real data will be subject to a much larger roundoff error than computer-generated data. This
error is due to instrumentation limitations and is dependent on the magnitudes of the magnetic field
observed at a particular probe location. For testing purposes, it was assumed that the minimum ob-
servable value of magnetic field is 0.1S nanotesla, where S is a scale factor determined by the maxi-
mum value of magnetic field H, seen at a particular radius. For a particular value of H, , the scale
factor S used in the tests can be determined from Table 7.

The data used in each of the foregoing tests were modified by being rounded off to the nearest
0.1S nanotesla; then they were reanalyzed. As was expected, changes in the resultant calculations were
observed, but they were in general small when compared with the systematic error already present.
Table 8 shows the changes observed for the x-axis dipole-moment component for one particular source
(Sp = 1.4) measured with probes in configuration number 1.

Table 8 shows the important effects of the roundoff process. Notice first of all that the values
calculated from the truncated data are in general more accurate than the values using perfect data.
This effect was observed most often in the first and second orders of fit. It is indirectly due to the

Table 7—Determination of scale factor S.

Range of H,,
(nanoteslas) S
From To
0 100 1
100 200 2
200 500 5
500 1000 10
1000 2000 20
2000 5000 50
5000 10,000 100
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Table 8—Dipole-moment calculations for a 0.7r, -diameter source

(actual dipole moment was 1.500 A-m?.).

Perfect Data (1073 A-m?) Rounded Data (1073 A-m?) _
Systematic
Order of Tolerance
Fit Moment Statistical Moment Statistical (1073 A-m?)
Tolerance Tolerance
1 3355.11 1897.47 13730.0
2 1221.46 1467.84 5194.3
3 1555.70 1536.53 470.70
4 1470.62 6.30 1496.34 1.43 428.50
5 1502.74 1.06 1500.80 1.13 37.60
6 1499 .88 0.03 1499 .48 0.27 4.97
7 1499.99 0.01 1497.97 2.63 1.11

accuracy assigned to the rounded magnetic field values. The uncertainty due to roundoff at each of
the data points is +0.05S, where S is the scale factor for that particular probe location. This uncer-
tainty varies from location to location (since the field levels vary). This means that the weights w; of
each of the near-field equations will be different for each probe location. Since field levels are higher
on the closer probes, the equations for these probes will be weighted less than those for the farther
probes. This means that the systematic errors which arise from the closer probes (which are in general
larger than those from the farther probes) will be correspondingly reduced. In the cases where perfect
data were used, all the equations were weighted equally, allowing the total systematic error to be
larger.

Another effect of the roundoff is a slightly increased error as the order of fit is increased. This is
noticeable in the table for orders of fit 6 and 7. This effect is believed to be due in part to roundoff
of the data and in part to machine error.

Up to this point, the statistical uncertainty in the calculations has been neglected. This was be-
cause the uncertainty in the perfect data was very small, and the uncertainty in the calculation was
mostly due to systematic errors. However, when real data are used, the corresponding uncertainty in
the calculations becomes important. As the order of fit is increased, the systematic uncertainty de-
creases. In general, this is accompanied by an increase in the statistical uncertainty. In assigning limits
to the answer, one must choose the larger of the two. This was done for each case tested and it was
found that the actual error was within the limits predicted unless the order of fit was fairly high (see
Table 8).

Note that the uncertainty due to machine error has not been taken into account. The statistical
uncertainty is due to roundoff of the data, whereas machine errors are due to roundoff of any number
calculated by the computer. However, as was stated before, the machine errors are important only if
the order of fit is high.
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CHAPTER VII

DETECTION OF ERRORS

In an actual test situation, the accuracy usually assigned to the data is not the threshold accu-
racy of the instrumentation but the calibration accuracy (which is in general much larger). Errorsin
the data within these limits are to be expected, and their effect on the accuracy of the technique must
be examined. In order to do this, the data used in the previous tests were modified to simulate linear
calibration errors and were then reanalyzed. The results show that these errors are indeed significant
and that their effect increases with the order of fit. However, comparison of the results shows that
these errors can be.detected from observations of the behavior of the higher order multipole coeffi-
cients as a function of the order of fit.

The calibration accuracy assigned to a given data point was, as before, dependent on the maximum
field level seen at that particular probe location. This accuracy was assumed to be S nanotesla,*
where S is the same scale factor as before. The data points were modified by errors of the form
D' = aD, where D is the actual data point, D' is the new data point, and « is the error factor
(0.99 <a < 1.01) for a particular probe location and sensor.

In order to be able to detect the presence of errors, one must know what type of behavior to ex-
pect of the calculated multipole coefficients as the order of fit is changed. A few tests were run on
single- and double-dipole sources whose multipole coefficients were easily calculable (from Equations
40 and 41). Two observations were made from these tests.

The first was that the actual multipole coefficients of each of the sources decreased significantly
as the index of the coefficient was increased, even though the size of the source was large (Sp =1.4).
In the worst cases, the coefficients decreased by about a factor of 2 as the index was raised by 1.
Table 9 compares the actual x-axis multipole coefficients** (for an x-axis dipole displaced from the
center of the source by a distance of 0.6r, along the +x axis) with those calculated by near-field
analysis.

The second observation was that the changes in the coefficients became smaller and smaller as the
order of fit increased. These coefficients also steadily approached the true values (until machine error
became significant).

#This corresponds to an accuracy of 1 percent of the maximum field level observable on that particular range.
*xHenceforth, whenever “multipole coefficients™ are mentioned, it will refer to the actual multipole coefficients (given by Equations
16a and b) divided by 7" and expressed in nanotesla.
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3 Table 9—Multipole coefficients for a single displaced dipole, where a; =a; /,,J'1+2 and Aa]. is the change in the coefficient as one
goes from one order of fit to the next.

Calculated Value (nanoteslas)

Actual
Coefficient Value Order of Fit
(nanoteslas)
| 2 3 4 5 6 7
a, 80.00 188.58 51.69 82.03 78.95 80.06 80.00 79.98
Aa; 136.89 30.34 3.08 1.11 .06 .02
a, -21.6 -53.80 -12.60 -25.60 -21.08 -21.66 -21.82
Aa3 41.2 13.0 4.52 .58 .16
as +6.48 16.61 -0.35 8.26 6.17 5.06
Aag 16.96 8.61 2.09 1.11
a; -2.04 -6.80 .72 -2.87 -6.47
Aa7 7.52 3.59 3.6
aq +0.661 2.43 -0.44 -6.34
Aa9 2.87 5.90
a, -0.218 -0.87 ~5.49
Aa, 4.62
+0.0730 -1.38




These results suggest the behavior one can expect for an arbitrary source. Since the multipole
coefficients of a source are in fact combinations of the coefficients for single off-centered dipoles, and
since the latter coefficients decrease rapidly as the index becomes large, the coefficients of a compos-
ite source can be expected to exhibit the same general behavior. That is, the higher order coefficients
will in general be much smaller than those at the lower end of the multipole spectrum of the source.
Also, these higher order coefficients will in general decrease rapidly as the index is increased. It might
be argued that by careful selection of the locations and magnitudes of the dipoles within the source,

a particular multipole coefficient can be set to any desired magnitude in relation to the other coeffi-
cients. This is indeed true; however, the number of parameters that must be specified increases rapidly
with the index. This means that the probability of a coefficient at the high end of the spectrum (i.e.,
above the fifth coefficient) having a relatively high value will be small if the dipoles are randomly
placed within the source. The same thing cannot be said of the lower coefficients. Hence, one can
expect large variations from source to source at the low end of the spectrum.

The behavior of the calculated coefficients for an arbitrary source is not at all predictable. How-
ever, in general, large changes can be expected in these coefficients until the order of fit is at least
equal to the number of the most significant coefficients of the source. After this, the changes in the
coefficients should be small (until machine error becomes important). If the real coefficients of the
source decrease as the index increases throughout the multipole spectrum, the changes in the calcu-
lated coefficients can be expected to decrease as the order of fit is increased.

The results of many tests on sources whose multipole coefficients were not known in detail seem
to bear this theory out. Table 10 shows the calculated x-axis coefficients for a source (Sp = 1.2) con-
taining 20 dipoles. Notice the decrease in the magnitude of these coefficients as the index increases.
Notice also that the magnitudes of the changes in the coefficients in general decrease as the order of
fit is increased* (up to order of fit 6). These results are typical of each case tested.

When errors were introduced into the data, either by rounding off the data points or by intro-
ducing calibration factors, this behavior was changed. The effect of the errors was the same as that
caused by machine error with the exception that it occurred at a lower order of fit. It was character-
ized by increasingly large changes in the calculated multipole coefficients as the order of fit was in-
creased. The magnitudes of the calculated coefficients also became very large. When the data used in
the previous analyses was rounded off and reanalyzed, the results shown in Table 11 were obtained.

Table 12 gives the results of the analysis of the same data containing calibration errors. Notice
that the dipole moment values are affected the least by the presence of this error. Table 13 compares
the observed error in the dipole moment with the predicted error limits (either statistical or systematic,
whichever is larger) for the above cases. Note that in each case, machine error becomes significant in
the higher orders of fit. Again, these results are typical in that the error limits are in general predicta-
ble unless the machine error is large. The presence of this error is characterized by large fluctuations
in the calculated values of the multipole coefficient from one order of fit to the next and by un-
realistic values for the higher order multipole coefficients (specifically, for Table 12, order of fit 7).

*The large changes in the dipole and octopole moments from order of fit 2 to 3 are probably due to a fairly large moment (a5 = 130
nanotesla).

61



9

Table 10—Multipole coefficients (in nanoteslas) for a 1.2r; -diameter source calculated using perfect data. True dipole coefficient
= 115.44 nanoteslas, and Aa]. is the change in the coefficient from one order of fit to the next.

Order of Fit
Coefficient
1 2 3 4 5 6 7
a, -20.59 67.50 -109.25 -116.28 -115.26 ~-115.42 -115.45
Aa, 88.09 176.75 7.03 1.02 0.16 0.03
ay 34.62 -205.41 -235.14 -230.95 -232.36 -232.68
Aa, 240.03 29.73 4.19 1.41 0.32
as 96.80 -135.60 -127.62 -132.69 -134.51
Aay 38.8 7.98 5.07 1.82
a; -15.56 -8.58 -17.27 -22.59
Aa, 6.98 8.69 5.32
ay +2.25 ~4.68 -12.86
Aa, 6.93 8.18
a4, -2.08 -8.25
Aay 6.17
a3 ~1.79
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Table 11—Multipole coefficients (in nanoteslas) for a 1.2r, -diameter source calculated using rounded data. True dipole
coefficient = 115.44 nanoteslas, and Aa]. is the change in the coefficient from one order of fit to the next.

Order of Fit
Coefficient
1 2 3 4 5 6 7

a, -2.88 10.67 -108.16 -115.57 ~115.63 -115.40 -115.87
Aal 13.55 118.83 7.41 .06 .23 47

ay 10.40 -207.69 -233.18 -233.52 -231.72 -237.91
Aa3 218.09 25.49 .07 1.8 6.19

ag -98.24 -133.62 -134.52 -128.10 -164.90
Aa5 35.38 .9 6.42 36.8

a, -14.89 -15.89 -4.77 ~116.51
Aa7 1.00 11.12 11.74

dq ~0.38 8.66 -166.91
Aa9 9.04 175.57

ayq +2.77 -131.45
Aall 134.22

a3 39.38




Table 12—Multipole coefficients for a 1.2, -diameter source calculated using “uncalibrated” data. True dipole
coefficient = 115.44 nanoteslas, and Aa]. is the change in the coefficient from one order of fit to the next.

Order of Fit
Coefficient
1 2 3 4 5 6 7

a; -3.03 10.69 108.23 -115.93 -116.29 -117.08 -122.49
Aa, 13.72 118.92 7.70 .36 .79 5.4

a, 10.52 -207.85 -234.10 -~236.12 -242.33 -313.11
Aa, 218.37 26.25 2.02 6.21 70.78

as -98.37 -134.81 -140.01 ~-162.21 -583.13
Aag 36.44 5.2 22.20 420.92

a; -15.33 -21.12 -59.54 -1337.49
Aa, 5.79 38.42 1277.95

dqg -2.19 -33.46 -2041.48
Aag 31.27 2008.02

a, -9.57 -1544.59
Aay 1545.02

-450.36




Table 13—Observed errors and computed error limits for dipole moments in Tables 10, 11, and 12
(values in nanoteslas).

Perfect Data (Table 10) Rounded Data (Table 11) | Uncalibrated Data (Table 12)
Order
ofFit | 90T | cocutated | 9P | Gulcutated | OPVed | uicutated
Error in .. Error in .. Error in L
Limits Limits Limits
ay a; a,
1 -118.56 4187 -112.56 4187 -140.52 4187
2 -228.68 1069 -126.11 1069 -13.36 1069
3 -7.74 78.96 -7.28 78.96 -8.92 78.96
4 +1.06 38.32 +0.13 38.32 +0.61 38.32
5 ~0.23 2.30 +0.19 2.30 +1.07 2.30
6 -0.02 0.27 ~0.04 0.27 +2.06 1.18%
7 -0.01 0.20 +0.43 0.78* +8.81 4.56%

*Statistical error limit (other values indicate estimated systematic errors).

To recapitulate, the errors associated with this near-field technique vary with the order of

fit to the near-field equations.

They can be divided into three groups:

systematic errors, data

errors, and machine errors. The first of these, the systematic errors, predominate at low orders of fit
(M =1, 2, and 3) and decrease rapidly as the order of fit is increased. The data errors (i.e., those

caused by imperfect data) are present at every order of fit but tend to become larger as the order of
fit is increased.

These two types of errors are similar in that limits can be placed upon them (which were valid in
every case tested). Machine errors, on the other hand, are caused by roundoff of numbers by the com-

puter and are very hard to estimate. Fortunately, they are noticeable only at high orders of fit (usually
M =6 or 7), and their presence can be detected by careful observation of the results.
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CHAPTER Vil

CONCLUSIONS

This paper has presented a detailed description of a new technique that can be used to determine
the magnetic dipole moment of a spacecraft or any other magnetic source. The major advantage of
the technique is that the data required are always easily obtained and easily analyzed (on a computer).

An extensive testing program was conducted to verify the theory. In all, over 2000 analyses
were performed, over 500 of which were on composite sources. The results of the tests allow several
conclusions to be drawn about the technique.

First, the best results are obtained if all the sensors are located along the x axis (i.e., in the +1
configuration). The spacing of the probes is not really critical, but care should be taken to ensure that
they are neither too close together (r . /7 ., < 2) nor too far apart * ax/Tmin =4

Second, the magnitude of the errors obtained will decrease as r; (the smallest probe radius) is in-
creased. However, accurate answers were obtained for sources whose diameters were 1.4r,. If possi-
ble, r; should be approximately the diameter of the smallest sphere enclosing the source.

Third, the intermediate orders of fit (M = 3, 4, 5) will, in general, give the answers with the
smallest uncertainty. For orders of fit lower than this, the systematic uncertainty will, in general, be
too large to be useful. For orders of fit larger than this, the possibility of large machine errors exists.
However, higher orders of fit can be used, provided that the changes in the higher coefficients are taken
into account. Analyses in which the coefficients exhibit large fluctuations or unrealistic values should
be suspect.

It should be noted that the z-axis calculations are different from those of the x and y axes in that
one has much less data to work with. Although the calculations for this axis are just as valid as for the
x and y axes, they should not be expected to be as accurate. Also, in an actual test situation, care
should be taken to ensure that there is no zero level uncertainty on the z-axis sensors of the probes be-
fore data are taken, because this will also introduce large errors.

In estimating the systematic errors for a given test case, one can use the values of Q1 and Q3 pre-
sented in Tables 2 and 3. To do this, choose the probe configuration and size parameter S that best
fit the particular test situation. This will provide only an approximate value for Q! and Q3. However,
since the actual errors were much smaller than the estimated errors for the lower orders of fit, these
values are not critical.
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The test cases used to verify this technique were fairly extensive; but it is not assumed that they
covered all possibilities. However, the sources used were considerably more magnetic than the average
spacecraft.* Hence, one can assume that the errors obtained were larger (in magnetic moment units)
than would actually be observed.

At any rate, the technique was found to work well in every case tested. It is believed that it will
work well in any case in which one can obtain good data. It is also not unreasonable to assume that
further study will yield a completely computerized version of this technique.

*That is, their magnetic components were stronger.
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‘Appendix A

Vector Spherical Harmonics

Vector spherical harmonics arise when a vector field is transformed by a rotation of its frame of
reference. This type of transformation is more complicated than that of a scalar field because the com-
ponents of the vector field are dependent upon the axes of the particular frame of reference.

The rotation of a frame can be described in terms of an ““operator” J = L + S, where L is the an-
gular momentum operator —ir x Vand S is the spin operator, whose components are

S, =iu; x ,Sz=zu2><,anCIS3 = iU, x .

The operators L and S each have their own sets of eigenfunctions. For the operator L, the spherical
harmonics ij satisfy the relations

2 — i3
and L7y, =ji(j+1Y,,
LY, =mY, .

For the spin operator S, the vectors e , are defined by

e =—-‘\—/‘_5 (uy +iu,),
€ =Ujy ,
d
an 1( -
e .= — (u, —iu,),
-1 \/5 1 2
such that
S2e =2e
and 7 7
Szeq =qe, .

It is convenient to construct eigenfunctions of the operator J similar to those above for L and S.
Since the operators L and S commute with each other, and each satisfies the commutation relations

Ly, Ly)= z'L3, (LZ,L3) =iL,, (L3,L1) =iL,
and
(5;,9,) = z'S3 , etc.,
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this is easily done by means of the vector addition law. This law states that if J; and J, are two
angular momentum operators which satisfy the above commutation rules and which commute with
each other, and if Y;,,(¢) is the angular momentum eigenfunction of the operator J 4 such that

I2yim@ =10+ 1), (@)
and
2V im (@ = MY (@) 5

eigenfunctions of the operator J =J; +J, can be constructed from products of the functions
Yim(1)y4,(2). This product is an eigenfunction of the operator J, = J; , +J,, with eigenvalue

M m + 7, but is not an eigenfunction of the operator J2 = J2 + 12 +J2. However, linear combina-
tions of the products Yim 1)y, (2) can be used to form 51mu1taneous eigenfunctions of the operator
J2 and J,. This elgenfunctlon w111 be denoted by GM and will be defined by

M
GJ jia ~

= 2 2 C,, . M;m, 1)y, (Dy,,2) (A-1)

m=—j r=—q

where the quantities C;, are real numbers known as Clebsch-Gordan coefficients. These coefficients
exhibit the properties that

C].q =0 unless M=m+r,

and
J=j+q jtq-1, ..., li-ql.

The functions G¥. Tjq are eigenfunctions of the operator J? with eigenvalue J(J + 1) and of the operator
J, with eigenvalue M.

Now, eigenfunctions of the operator J = L + S may be constructed using the functions e . and ij
(These eigenfunctions are the vector spherical harmonics Y%-l defined as Y% in the text.*) They are
given by

+j +1
Y7 = z z C\U, M:m, @)Y, 0,9)e, . (A-2)

m==j q=—1

The values of C}.l can be computed from Table A-1 (taken from Reference 4).

One is now interested in how the vector spherical harmonics behave when operated on by the
various vector operators (e.g., V * -V x ). The following equations were obtained from Reference 4,
and some will be stated without proof. In these equations, the function f is a scalar function of the
radial coordinate only.

*The third subscript is equal to 1 because S2eq = 2eq =SS+ 1)eq; hence, Y%s becomes Y%l.
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Table A-1—-Clebsch-Gordan coefficients le W, M}, q).

q=1 q=0 q=-1
Jeje1 | [GEMGEMA N2 TG =M+ DGHM+ D] | TG=mG=m+ 1]
2+ )25+ 2) Qi+ DG+ D Qi+ 1D)2j+2) )
J= [UrmiG-m+ 1) M2 ]1/2 |:(J'—M)(J’+M+ D]
g NG+ D G+ 1) oG+ |
J=i=1 r(f—M)(f—MH)} 1 _[(i-M)(HM):’l/z [(/’+M)(]'+M+ n7H
! N+ D 7+ 1) CH+1)
fd j+2 i \?
fd j-1\ (j+1\"?
M = —_ -
v Y- l(dr r )f <2j+1> R (A4)
(4 N\ VA WIS\
Vx(fy;.‘]?') —z(;; - ;)f(sz) Y%.H + (&7 + >f<2j+ 1) YV . (AS)
. 1/2 .
j+1 d j+2
V- Y) == <2].+ 1) (d— = )fY,-M ; (A-6)
. 1/2 .
] d ]
veeYR_) =(2]_+1> (;l; - ;) £ s (A7)
vVeY!) =0 (for any f) , (A-8)
LY, ==itx VY, = /i(G+1)Y!", (A-9)
and
, 1/2 . . 1/2 ,
= — jt1 i__]_ m g _d_ i*1 M -
V(ijm) - <2j+ 1) (dr r> YN” * <2]'+ 1) (dr " v )fo’j'l ' (A-10)

The above equations can be proven in the following manner. First of all, the expression for the
quantity Vq f (r)Y].m is needed, where Vq is the gth spherical component of V. This can be shown to

be equal to (Reference 4, p. 80)

73



. 1/2 .
j+1 ) . 9 J
<2j ¥ 3> GrG+ Lm*qimq) (z{r ‘7) FYist meq

. 2
WA
2ji—1

Consider now the quantity

j | : 9 1 Y A-11
C}'l(]_lam+qrm:Q) 'a—}:-l- ; f j—l,m+q ° ( - )

v (YS) -
This is equal to

+j +1 +1
z Z z e ve, V,Y,,C(, M m, q)

m=—j q==1 r=—1

+j +1
z V, Y Coi U, M;m, q)

m=—j q==1

1]

+7

. 1/2 . +1
(it ! o ] . . _ v
7)) o ) > D GUM MGG Lmtaim Yy,

m=—j q=—1

iN2 e e it
- <’2]T1> <5 = >f 2 CoM;m, )C (G = Lm+q,m )Yy 0y

m=—j q=-1

However, because m + g = M, the quantities Y; £1,m+q A€ independent of the summation over m and q.

Hence, since Clebsch-Gordan coefficients have the property that

+j

+Jj
> > Gl Mim, m )G M s, ') =88

. .1
m=—j m=-—j

this expression can be reduced to

. 1/2 . . 1/2 .
oy = (L] 2 _ 7 () (e 1t
VU E <2j + 3> <ar r)fo”’M 0=, <2j - 1> <8r T P it ®rasj -

Substitution of the valuesJ + 1,J — 1, and J for j yields Equations A-6, A-7, and A-8, respectively. The
proofs of the other equations are similar.
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Appendix B

Near-Field Computer Program

A listing of the program used to generate data for the near field of a system of dipoles and also
used in the near-field analysis of these data is presented in this appendix.

Let us define B,, B, , and B s as the components with respect to an origin 0 of the magnetic field
B of a point dipole (moment = m) located at the point k (see Figure B-1). The equations for B,, B, ,
and B s are as follows:

3m - (r—k) m-er
B(r,0,¢) = v, — ,
w512 w32
3m * (r—k) m- 0
B,(r,0,¢) == —————y, ~ ;
512 32
and
3m - (r—k) m
B,(,0,9) = P
w32 w32
where
Y, = k(sin 6 sin 0, cos (¢ —¢,, )+ cos 6 cosb, ),
Y, =k(cos 0 sin 0, cos(¢p—¢, )—sin0 cos 0,),
Yy =k(sinf,, sin(¢—9,),
and

w =r2+k2-—2r¢1.
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Figure B-1—The magnetic field B of a dipole m at the point P,



- PROGRAM NRFIELD

TC GENERATE NEAR FIELD MAGNETIC DATA
EQUIVALENCE (ALPHA(1),HX(1)) ,(BETA(1),HX(26)), (GAMMA(L) ,HX(51))

EQUIVALENCE (UA(1),HY (1)), (DB(1),HY(26)),{DC(1),HY(51))
DIMENSION MX(100), MY(103), MZ(196),D(1008), TD(100), PD(1060)

DIMENSION DVX{(L) ,DVY(4),DVZH)
DIMENSION R(4), THETA(4), COEF (23)

DIMENSION CX(4), SX{(4), CY(4), SY(L),0CZ(4)
DIMENSION CXD(4) ,SXD(4)y CYD(4), SYD(W), DCZD(4L)

DIMENSION QX(8), QY(8),QZ(8), QAXU(8), QYD(8),QZD(8)
DIMENSION TITITLE(20)

DIMENSION HX(36.k4 )y HY(3694 )y HZ(36,4 )
DIMENSION X(36),Y(36), Z(3H), PHI(26),PH(36)

DIMFENSION T{18)
DIMENSION ALPHA(25),BETA(25) ,GAMMA(25) ,DA(25) ,0B(25) ,8C(25)

REAL MUPX ysMUPY  MUPZsMURZMUT,,LR,LT,LP ,MUP
REAL MX MYy MZyMLY MLZ o MLX,y MLy MURXyMURY 3 MURZ 4 MUTX4MUTY,MUTZ

REAL MAX,MIN

ZERDO QUT ARRAYS
DO 450 T = 1,4

CX{(I) = CY(I) = SX(IY = SY(I) = DCZ(I) = 0.
CXD(I) = SXD(I) = CYD(I) = SYD(I) = DCZD(I) = 1.

ALPHA(I) = BETA(I) = GAMMA(I) = 3.
DVX(I) = DVY(I) = DVZ(I) = 1.

DACTI) = 1B(I) = DC(I) = Q.
IT = 1 + &4

QX(D) = aY(D = Qz(I) = 0.
OX(IT) = aY(II) = 3Z(II) = 0.

|t

AXD(IT) QYD(II) = QZO(II) = 1.
@XD(I) = QYD(I) = QZD0(I) = 1.

HX(T) = HY(I)= HZ(I)= 0.
459 CONTINUE

T(1) = 65.314
T(3)=2.353

T(2)=2.920
T(4)=2.132
T(5)=2.015
T(E)=1.9%3

T(7)=1.8%5
T(8)=1.850

T(3)=1.833
T(10)=1.812

FORMAT (67 10.0)

FORMAT(121I5)

.3
.1 FORMAT(8710.0)
2
1 READ(H042) NUM,ICON,NORDER

IF(NUM) 430,430,350

50 READ(60,1) € R(I) I = 1,NUM)
2% READ(60,7) ND
TF(ND) 1111,1111,429

579 READ(GBO.3) (MX(I) 4MY (1) 4MZ(I),0(I),TD(I),PO(I), I = 1, WD)
Jg = 0
Do 4061 T = 1,ND
IF(R(1)-D(I)) 4DB62,40562,4061

L0622 WRITE(B1,4063) 1
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NOh3 FORMAT( ?GX, 12HESROR IN O »y13,2H) s /)
JG = 1
st C("\iTIMUE
) IF(JQ) 4765,4065,628
4965 CONTINUE
N0 205 I = 1,4uw
230 THETA(I) = 90.
IF(ICON) 301,201,302
291 THETA(NUMY) = 181,
THETA(NUY = 1) = {.
392 CUNTINUE
S N0 10 I=1 ,NUM

10 THETA(I)=THETA(I) *,91745327

52

No 625 T=1,ND
CTID(T) = TOLIN*L01745327
P0(I) = PD(I)*,01745327
5 CONTINUE

52

NTFRMS = NTERM2

NP = NUM

La = 0
JdJ =00

il
—

"

Ne 521 L = 1,36
1 PH(L) = TLOATIL

[}
'.A
'

%«
[y
]
.
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N0 90 J=1,NUM
OHI==,1765327
N0 01 L = 1,36

1 X(L) = Y(L) = Z(L) = 0,

Lo = 1
DO 109 K=1,36

PHI=PHI+. 1745327
PHIK=PHY . e

HR=HT=HP=10,
RJI=R (J)

SIMTJU=SIN(THETA(J)Y
COSTU=COS(THETA(Y))

0

DC RO I=1,ND
CALCULATY MAGNETIC

CS=SINTJ¥SIN(TO(I)) *COS(PHIK-PD(I))

ALPH =CS+COSTU¥COS(TR(D)Y
ET
GAMM =STNA(TD(I)) *SIN(PHIK-PO(I))

FIFLD AT RJZTHETA(J) 4PHI(K)

QUE TO PCLE I

‘COQWJ*SIN(TD(I))VCﬁg(PHIK—rD(I))-SINTJ*COS(TD(I))

Q=RJIF¥2J+I(II*O (1) -2, ¥ 0 J¥D (1) ¥ALPH

£S=RJ*STHUTI*COS(PHIK) - SIN(TN (1)) *COS(PD(II)¥*D(I)

=D(I)*SINCTO(I)) *SIN(PD(I) )

DI

MUDY MZ(TY*LOSTY

MUTX= =MX (1 )Y*COSTJ*COS (PHIKY

MUTY=MY(I)*COSTI®*SIN(PHIK)

MLX=MX (T} *CS
B CMLY=SMY (D) * (RISSINTI¥FSTIN(PHIK)
MLZ=M7(T) ¥ (PU*COSTI=DL(I)*LOS(TD
ML=MLX+MLY+MLYZ
CS=2.*ML/ (SORT () *O¥ Q)
o MUR X"MXiA)*SlﬁTdfoéffﬁlKlﬁ,
MURY=MY (T) FSINTJ*SIN (PHIK)

MUTZ=-MZ{I)*SINTJ
MUPX==-MX{I)*SIN(PHIK)

MUPY=MY (1) *COS (PHIK)




MUPZ=1, e
MUR=MURX+ MURY+MURZ
MUT=MUTX+MUTY+MUTZ

MUP=MUPX+MUPY+MUPZ
Q1=1./ (SQRT QI *Q)
LR=MUR*Q1 B

o LI=muTEar
LP=MUP*Q1

c MAGNETIC FIELDS

3R=CS*(RJ-D (I) *ALPH ) -LR

BT=-CS¥DLI) ¥BT -LT

BP=CS®0D(I)*GAAM ~LP
L TOVAL FIZLD

HR=HR+BR
e HIEHTRBT L L
HP=HP+RP
.39 CONTINUE

DIFF=THEIA(J)-1.5708
IF(DIFF) 20,430,40

26 IF(ABS(DIFF)=-.01) 20,30,25
25 Z(K) =-HR¥100000.

X(K) =H!1*100000.
Y(K) ==-HP*183000.

GC TO 361
30 X(K) =H~¥100300.,

Z(K) =H1*100400.

Y(K) ~=-4P¥103000.

GO TO 262

40 IF(ABS(DIFF)=-.01) 30,30,45

45 7 (K) =HR*1000006.
X(K) =-H7*4100000.

Y(X) =-4P*100000.
350 _CONTINUE

131 FORMAT( 10X 43(F23.10,2X),/)
12 FORMAT( 10Xy I5)

HX (Kyd) = X(K)
HY (KyJ) = Y (XK)
HZ(KyJ) = Z(K)

130 CONTINUE

HAVE MAGNETIC FIELD

a0

NOW CALL FOURIER ANALYSIS SUSROUTIMES

372 FORMAT(/, 20X,19HCOEF FOR PROBE NO.  ,I1)

c

CALL FCURTIER(NORDER, X,COEF)

CX(J) = TGEF(2)
SX{J) = COEF(3)

CALL FOURIER(NORD:R, Y,DO0LF)
SY{J) = DOEF(3)

CY(J) = CREF(2)
CALL FOURIER(NORDER, Z,0OEF)

DC7(J) = COEF(L)

2303 CONTINUE 7
IF(NP~J) 50L,50L,5073

533 IF{4=J) 204,514,910

594 JJd = JJ+1
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NP = NP=®
Lo = 0
ISTART = (JU-1)%J + 1
TTTTTTsTOP = Ud oy R

WRITE(E1,155)(I,I=ISTART,ISTOP)
1”5 FCRMAT (1HL,4(16X,5PROBE, 12410X) 3/7436H THETA,BX,1HX 19X, 1HY ;39X 1H:
o Z{12Xy 11X, qx,iﬂv,qx,lHZ)/)
10 2245 K = 1,36
WRTTF(61,156) PHK) 5 (HX(Ky L) HY (KyL) yHZ(K,L) 9L = 1,4)
27245 CONTINUE T '
156 FORMAT(IY gF 54193 (1X3F9,.3) 33(0X9F3.3431X9F3.351X4F3,3))
TIF(ICON) 6D20,40210,4030
_4h20 NJ = NUM - 2
G0 70 4031
4030 NJ = NUM
4031 CALL MAXMIN(MAX,MIN,36,HX(1,NJ))
RZ = RNJI¥R(NJ)FR(NUI*, 00001
8Y = .25% (MAX-MIN)¥R3
CALL MAXAIN(MAX,MIN,y36,4Y (1,NJ))
TTTTTTTTRY = J5¥(MAX- wIN>4§§““” o
CALL MAXMIN(MAX,MINy3by,HZ (15,NJ))
'B: = ARS (MAX)
B2 = ABS{MIN) o
IF(Q1-82) 407044597 0,5080
4020 B7Z = MAXYR3
GO TO w071
4070 37 = MIN¥R3
4071 CONTINUF

B = SQR2(3X¥IX _+ BY*AY+3Z¥37)
501 DO 602 T = 1.4
.. Do 502 L = 1,36

HX (LyT) = HY(LoI) = HZ(L,I) = 0.
sw? CONTINUE
5¢ CONTINUE

,C,,.“ e
an CONTINUF
C_ AT THIS PCINT ALL CALCULATIONS ARE CCMPLETE
c FPOM HER- ON IS MAINLY JUTPUT- PLOTTING AND PRINTING
C
C PRINT SFELTICN
Qwiﬁﬁm_”“m“mw,,, e
c CHANGE PHI FROM RADIANS TO DELGRECS

o PHI(LI=.
DO 150 1:2,36
155 PHI(I)=P~I(I=-1)+1".
IF(17.E0.4) 1112,1113
1112 WPITE(61,151) B
151 FORMAT(// /77777777 20X 4544AGNETIC FIELD CALSULATIONS=--PRO3E LODCAT.
CLONS )
N0 161 I= 1,NUM
FHETACI) = THITA(I)/ .01745327
151 CONTINUF
CWRITE(R1,152) (I,R(T) ,THETA(I) ,I=1,NUM)
152 FCHMAT (47 Xy 6HPROBY (3 T1420H) IS LNCATED AT R = +F11.4,13k (M. THuTA
1 = S F11.h41X,7HDEGPEES /)

1113 WRITE(F1,152) ND
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153

FORMAT(// 420X, 18HFIELE PRODUCED BY

9 I2,22H DIPOLES DETERMINEYD BY

)

pDe 162 T = 1, ND

152

TD(I) = TD(I)/.01745327
PD(I) = PD(I)/.01745327
CONTINUE

WRITE(61.154) (TyMX(I) s 1 oMY (T) 31,7 (I1)51,0(I)3I,TD(I)1,FD(I),1I=1,
1ND)

155 FORMAT (1%, 3HMX (3129 2H) =5 F1Le 441X, 3HAY (312,290 =,F11aby1X,3HNZ (512,
12H) =, F11.651X2HD (5 T2, 2H)=F 1141 X93HTD(512,2H)=,F114451Xy3HPU (512

u,?H)zyFiloQ)

DN=0.

DE=0.
DD=10,

DO 1010 I=1,ND
DN=DON+MX(I)

10186

DE=DE-MY(I)
DD=DD-MZ{D)

WRITE(H61,1011) DN,DE,LND
WPITE(E1,4032) B

4032 FORMAT(20X,27HMAGNETIZATION ESTIMATION =

1011 FORMAT(9(/) ,45X, 204TOTAL DIPOLE MOMENTS

2F20.10477)
9/ /350X, THNORTH =,

1Fi1et, /
C  PLACE F.C.#3 IN PROPER FORM FOR MATRIX

350Xy BHEAST = ZFll.by/y

491 N =

IF(ICON) 401,401,402

NUM-2

7HDOWN =

sy Fll.b44,//777)

CXAZ =.25% (CX(NUM=-1)+CX(NUM) +SY (NUM=-1) +SY(NUM))

SXAZ = (25% (SX(NUM=1)+SX(NUM)=-CY (NUM=1)-CY (NUM)) e

NCZA3 = LS5%(DCZ(NUM=1)+DCZ (NUM))

CXA3D = .5

SXA2D = .5 o -
o DCZA3D = L7707 e _ o

GC YO 403
492 N = NUM . e o . _ B

403 D0 404 T = 14N

NN = T+N

AX(I) = 4X(I)

GX(NN) = =SY(I) _

AY(I) = SX(I)

QYI(NN) = CY (LY - _

QZ(I) = 2CZ(D)

434 CONTINUE

... 405 NM =

IF(ICON) 405,405,406
2¥ (MUM-=-2)

QX (NM+1) = -CXA3
AXD(NM+1) =CXA3D

QY (NM+1)=-SXA3
QYD (NM+1) =SXA3D

QZ (N+1)=-0C7A3

QZD(N+1) = DBCZA3D

NEQX = N¥+1
. _NEQ7 = NuM-1 _ —
GO TO 897
L15 NFQX = 2¥NUM
NEQZ = NiM

C NOA EVERYTHING IS IN THE GORRECT FORM FOR SOLN

BY MATRIXX

337 CONTINUE
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_WEITE(RL1, 407)

L7

FORMAT(2: X 2H? 5 13Xy IHAX 5 12X, 3HAXD 5 12X, 2IHQY 5 12X,

1 2HOYD , 12X 5 3HOZ 5 12Xy 3HQZY 4 //)

911
917

1.1 =1,NM

FORMAT( 15Xy 7(F1547 +1X)y7)
FORMAT (15X, 5(F15.7 31X) 4/)

WRITE(EL.0141) (R(I) 45 AX(I)y AXDCI) 9GY(I) yGYD(T) ,AZ(I),QZD(I),

DC Q12 T = 1,48
I?2 = 1 +# N

WRPITE(BH1,912) R(I),AX(I2),QXD(I2),QY(TI2),QYD(I2)
CONYTINMUE

913

4

TF (ICON) 10,410,411
KL = 2*NUM -3 S
WRITE(61,911) (RIN+1) ,OX(KL) 3AXD(KL) 3 QY (KL) 3 QYD (KL) yQZ (N+1),
1 GZD(N+1))

411
L2295
420
ERE

Nl
BJ%

COMTINUE
CALL MATZIX(ICON,1,NUM NEQXyNTEFMS,R, QX,UXDyALPHA,DA)
CALL MATHIX(ICON,1sNUMSNEQXyNTEFIS4R ,QY,QYD,BFTA 08)

_FORMATC 50X, BHXAXIS /)

FORMAT( 50X, 6HYAXIS /)
FORKMAT( 50Xy HHZAXIS y //)

21

CALL MAT<IX(ICONy.UsNUMINEQZHaNTERM? yR4AZ 9QZDyGAMMA,DC)
CWRITE(£1,27)

DC S0 I = 1,NTERMS

J = 2¥1 - 1

TWRPITE(EL, 21Y (I3 ALPHACTY L DA (TI) ,J»3FTA(I)Y 08 (1Y, J,GAMMA(T) , 00 (1))
FORMAT (4H A(,I12,6H41) 3 F1B 0, 1X 4 2H4+=9F 1045,

54

1 gH B(yI2ebH,yl) yFLBaGy1Xy2H+=9F 1045
L hH AGyI2,64,"7) 3F18.9,1Xy2H+=4F10.5)
CONTINUE

Hotn

27 FCPMAT (30X, 32HCALCULATED MULTIFOLE COEFICIENTS s /7y 77Xy

17 6HX EXTS, B8XyBHVARIANCE, 38X, BHY AXIS,8X, BHVARIANCE,8X,
1 fHZ AYIS, 38X, S8HVARIANCE,/)

CALCULAT. MOMLNTS
RP=R(1)*2 (1) *2(1)%,30001
TALPHATIY =ALPHA (LY *RR
3ETA(L) =-BETA(1) ¥RR
GAMMA (1) =-5AMYA (1) ¥RR
IR=NEQX-NTEPMS.
DA(1) = DA(L)®RR*T(IR)
DR(1)=072(1) *RR¥*T (IR)
IR=NEQZ~-HTERM?
NC{1)=0CL1) ¥RR*T (IR)

2050

WEITE(61,2050) ALPHA(1) ,0A(1) ,2ETA(1) ,OB (1) ,GAMMA(1),DC (1)

FORMAT (4(/) 10X, 25HCAL CULATED DIPCLE MOMENTS  ,20X,29HY0 PLERCENT
1 CONFIDANCE LIMITS 5/ 320X3HMNCRTH = 4F20.10,20X,F20410,/ 521X,
L9HMEAST =  ,F20.10,20X,F20.105/920X,9HMIOKN =  ,F20.10,20X,F20

110,7777)

C CHECK FOR ANDTHER ANALYQI§

30978
3nna
304N

NTERMS = NTERMS + 1

NTERM?2 = NTERMZ + 1

IF(MEQZ - NTERM2) 300%,3308,300G
NTEPMZ = 1 ) L R
IF(NEQX - NTERMS) Z911,3310,411
NTERMS = 1

82

GO TO 424



430 CONTINUE

STOP
END

SUBROUTINE MATRIX(NCON, NAXIS, NRy NEQ,

IP, Ry Ay O,

TO FCRN WEIGHTED MATRIX EQUATIONS
DIMENSION R(1) ,A(1), U(1)

YaNY)

DIMENSION C(25,425) » M(25,25)

DIMENSION Q(25,425)
REAL M

DC 1 1425

NIMENSION Y (25),VY(25) 4X(25),RAC(Y)

I
X(I) = Y(I) = VY (I) = 0.
20 1-.J 1,25
M(I,d) = 0.
14yNR

2 RAD(I) R(1)/R(I)

oo o< n

IF(NCON) 69093
3 IF (NAXTS) 54544

u N = NEQ/?
GO 10 9

5 N = NEO
GO 70 9

6 IF(NAXIS) 8,847
7 N = (NER-1)/2

GO T0 9
8 N = NEQ-1

9 DO 17 T = 1,N
DO 17 J = 1,1IP

RP = RAN(I)¥*(2¥J+1)
F = 1.

DF 1.
TJ 1.

DC 10 K = 1,4J
F F¥FLOAT (K)

DF DF*FLOAT(2¥K~1)
12 TJ -2.%7J

FF (=2.¥%FLOAT(J))Y 7 (TJ*F)
RR RR¥*FF®QF

o

IF(NAXIS) 12,912,111

41 C(I,J) = 2,*FLOAT(J)ERR

IN = I + N
C(IN,J) = RR

GO 10 13
12 C(I,J) = RR

12 CONTINUE
TF(NCON) 14414417

c

14 RA = RAD(NR)®* (2¥J+1)

COMPUTE C(NEN,J) FOR U CONFIGURATION

IF(NAXTIS) 1645164519

15 C(MEQsJ) = FLOAT(2%)-1)*FLOAT(DI*RA

GC 10 17
16 CINEQ,J) = 2. * FLOAT(N¥RA

17 CONTINUF

83



HAVE (C(I,J) FO R ALL CONFIGS AND AXES

CONSTRUCT LLSG AND DATA MATRICES
DO 18 J = 1,1IP

D0 18 I = 1,NEQ
18 X(J) = X(J) +(ACII*C(I,J4)) /(BLI)*D(I))

00 19 K 1,1°P
B0 19 J 1,1IP

[ I PN |

H

DO 19 I =1,NEQ
19 MJoK) = M(JyK) + (CUI,J)*C(I,K))/(D(I)*D(I))

c

HAVE WrIGHTED MATRICES
DO 30 I = 1,IP

Y(I) = X(I)
30 _CONYINUE

CALL MATINV(M, IP, Y, 1, DETER)
QIS NOW THE INVERSE OF M) ( Y = MULTIPOLE MOMENTS

()]

COMPUTE DEVISTIONS ANU RESIDUALS

RES = 0.
SS2 = 0.
Sk 0.

SQ (U

De 21 I 1,NEQ

H

RIS IR IR T]

FL O
DO 22 J

1,1IP

FL = FL
22 CONTINUE

+

C(I,J)*Y(Y)

S = (A(D)~-FL)/D(I)
RES = PES + S*S

SS S/A(T)
SS SQRT (SS*SS)

SR SFE + S
SG SG ¢ SS

o n

SS2 = SS? + SS*¥SS
21 CONTINUE

IDF = NEY = IP
S2 = RES/ FLOAT (IUF)

Lli FOPMAT( 10X46(EL15.7,42X))
458 FORMAT(53Xy 12HOATA MATRIX 9y /)

451 FORMAT(2X,/ 453Xy 20HMEASUREMENT MATRIX /)
452 FORMAT( ?X,/550XyB8HINVERSE y /)

453 FORMAT( 10Xy11H PAPAMLTERS ,7/)
454 FORMAT( 10X, 21HDEGREES OF FREEDOM = 4, 15,7/,

1 10X, 16HSIGMA SQUARED = s E20410 4, /, 10X, BHDETM = ’
1 £€20.10 - /)

412 FORMAT(11Xy/350Xy20dN-AR FIELD MATRIX 2 77)
VARIANCE OF Y(I) = VY(I)

N0 23 I = 1,IP
QU = M(I,1)*S?2

IF(CU.LT.04) 501,502
511 APTITF(E1,503)T41,1,M(X,I),RESyNEQ,IP,S2

S5U3 FORMAT(L9X,LHIEV( 3T12,1%X,32H) IS NEGATIVE. PARAMETERS AREe. o/

110X BHINVERSEC 512510y sT2,4H) = 5F20.10,/, 10X,SHRES = ,F20.14
13 /7,5HNEQ = ,12,2X,5HIP = ,12,2X,5HS2 =  SF20.14)
QU = -QU

532 ¥VYL(I) = SGQRTLQW)
23 CONTINUE
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RETURN
END



SUBPOUTINE MATINV(A,N,B,My DETERM)

DIMENSION IPIVOT(25) 3R (25,25)sB(25,1),INDEX(25,2)

DO

INITIALIZATION

m mim

DETERM=1.0
DO 20 J=1,4N

IPIVOT(U) =0
N0 558 I=1,4N

SEARCH FNR PIVOT ELEMINT

2l Ne]

AMAX=0.0

mmnlnmim

DO 105 J=14N
IF (IPIVOT(J)) 105,60

a8

DO 100 K=14N :
IF (IPIVOT(K)~-1) 80, 100, 749

a0
35

IF(ABSF (4 (JsK)) GTLABSF(AMAX) ) 85,100
IROKW=J

ICOLUM=K
AMAX=A (J,K)

100
195

CONTINUE
CONTINUE

IPTVOT(INOLUM) =IPIVOT(ICOLUM) +1

(o N He)

INTERCHANGE ROWS 10 PUT PIVOT ELEMENT ON

DIAGONAL

1419

IF (IROW.EQ.ICOLUM) 260,140
DETERM==DFETERM

DO 200 L = 1, N
SHAP=A(IROW,L)

A(IROW, LY =A(ICOLUM, L)
A(ICOLUM, L) =SKWAP

-n

IF(M) 214,260
Do 250 L=1, M

SKAP=B(I?0W,L)
B(IROW,L) =B (ICOLUM,L)

B(ICOLUM, L) =SHAP
INDFX(I,1)=TROW

INDEX(I,2)=ICOLUM
PIVOT =A(ICOLUM,ICOLUN)

M7 MM

DETFRM=D! TERM¥PIVOT
PIVIN= 1.0/PIVOT

(@ ]

DIVIDE PIVOT ROW 3Y PIVOT ELEMENT

"=

A(ICOLUM, ICOLUM)=1.10
D0 250 L=1,NM

-

350

A(ICOLUM, L) =A(ICOLUM,L)Y*PIVIN
IF(M) 362,380

T80

374

DC 370 L=1,M

-

o0

233

_ REDUCE NON=PIVOT ROWS

3(ICOLUM,L)=B(ICOLUM,L)*PIVIN

DO 550 L1=1,N

IF(LL EG,ICOLUM) 550,400

|
\
|
\
|
|
{
|
i
|
‘
\
{
‘
]
maime

[o¢]
9]



T=A(L1,ICOLUM)

N

ACLT,ICOLUMY=T.,D
DO 450 L=1,N

ACL1,L)=A(L1,L)-A(ICOLUMLL)*T
IF(M) 4B 4,550

N0 500 L=1,M

}0 BUL1,L)=8(L1,L)=-B(ICOLUM,L)*T

CONTINUE

INTERCHANGE COLUMNS

|
mim

DO 710 I=1,N
L=N+1~1

630

IF (INDEX(L,y1) .EQ.INDEX(Ly2) ) 710,630
JEQW=TINOZ X(Ly1)

JCOLUM=INDEX(L,2)
DC 705 K=1,N

nlmmim T

SHAP=A (K. JROW)
A(KyJROW) =A(K,JCOLUM)

795

A (K,JCOLUM) =SWAP
CONTINUE

718
740

CONMTINUE
RETURN

mmim

END

SURROUTINE FOURIER(NFIT,DATA,COFF)

CALCULAT: FOURIER COEF UP TO AMPLITUDES OF SIN(NFIT*THETA)

AND COSINFIT*THETA)
CCEF(1)=7C TERM

COEF(2K) IS COEF OF COS(XK®*THETA)
COEF(2K+1) IS COEF OF SIN(K*THETA)

(2l oRolloNel o¥e]

DIMENSION DATA (1),00FF(1)

A=0.
00 5 I=1,36

7

A=A+DATA(I)
COEF(1)=A/36.

00 100 N=1,4NFIT
THETA=-,1745327

31=T1=B2=72=0.
DC 50 J=1,36

THETA=THETA+,1745327
C=COS(N*THETA)

S=SIN(N*THETA)
B82=82+S*%

B1=R1+C*\
T1=DATA (J)*C+T1

Jt
e}

T2=DATA(J)*S+T2
ISTOR=2%N

130

COLF(ISTOR)=T1/B1
COEF(ISTOR+1)=T2/02

86

RETURN
END



SUBROUTINE LIST(AMP,NTERM, IFORMAT)

DIMENSION AMP(1)
GO T0(1,2,3) IFORMAT

1 ID=1HX
G0 10 &4

2 ID=1HY
GO TO &

3 ID0=1HZ
4 J=2

WRITE (61, 300) ID,AMP (1)
300 FORMATY (31Xy2HOBGyAL,3H =

»E11.4)

DO 400 I=1,NTERM
WRITE(61,100)1I,I0,AMP(J)

s 1,ID,AMP(J+1)

100 FORMAT(3NX,I1241HCyALy2H=
400 J=J+2

2E11.495X9I2,1HS, AL, 2H=

sE11.4)

WRITE(€1,500)
5010 FORMAT (/)

RETURN
END

SUBROUTINE MAXMIN(AMAX,AMIN,N,PTS)

DIMENSTION PTS(1)
AMAX=AMIN=PTS (1)

DO 100 I=2,N
AMAX=AMAX1 (AMAX,PTS(T))

100 AMIN=AMINI (AMIN,PTS(I))
RETURN

END

v
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